
www.kimballgroup.com Number 107, November 6, 2008

Design Tip #107 Using the SQL MERGE Statement for Slowly Changing Dimension Processing

By Warren Thornthwaite

Most ETL tools provide some functionality for handling slowly changing dimensions. Every so often,

when the tool isn’t performing as needed, the ETL developer will use the database to identify new and

changed rows, and apply the appropriate inserts and updates. I’ve shown examples of this code in

the Data Warehouse Lifecycle in Depth class using standard INSERT and UPDATE statements. A

few months ago, my friend Stuart Ozer suggested the new MERGE command in SQL Server 2008

might be more efficient, both from a code and an execution perspective. His reference to a blog by

Chad Boyd on MSSQLTips.com gave me some pointers on how it works. MERGE is a combination

INSERT, UPDATE and DELETE that provides significant control over what happens in each clause.

This example handles a simple customer dimension with two attributes: first name and last name.

We are going to treat first name as a Type 1 and last name as a Type 2. Remember, Type 1 is where

we handle a change in a dimension attribute by overwriting the old value with the new value; Type 2

is where we track history by adding a new row that becomes effective when the new value appears.

Step 1: Overwrite the Type 1 Changes

I tried to get the entire example working in a single MERGE statement, but the function is

deterministic and only allows one update statement, so I had to use a separate MERGE for the Type

1 updates. This could also be handled with an update statement since Type 1 is an update by

definition.

MERGE INTO dbo.Customer_Master AS CM

USING Customer_Source AS CS

ON (CM.Source_Cust_ID = CS.Source_Cust_ID)

WHEN MATCHED AND -- Update all existing rows for Type 1 changes

 CM.First_Name <> CS.First_Name

 THEN UPDATE SET CM.First_Name = CS.First_Name

This is a simple version of the MERGE syntax that says merge the Customer_Source table into the

Customer_Master dimension by joining on the business key, and update all matched rows where

First_Name in the master table does not equal the First_Name in the source table.

Step 2: Handle the Type 2 Changes

Now we’ll do a second MERGE statement to handle the Type 2 changes.

This is where things get a little tricky because there are several steps involved in tracking Type 2

changes. Our code will need to:

1. Insert brand new customer rows with the appropriate effective and end dates

2. Expire the old rows for those rows that have a Type 2 attribute change by setting the

appropriate end date and current_row flag = ‘n’

3. Insert the changed Type 2 rows with the appropriate effective and end dates and current_row

flag = ‘y’

The problem with this is it’s one too many steps for the MERGE syntax to handle. Fortunately, the

MERGE can stream its output to a subsequent process. We’ll use this to do the final insert of the

changed Type 2 rows by INSERTing into the Customer_Master table using a SELECT from the

MERGE results. This sounds like a convoluted way around the problem, but it has the advantage of

only needing to find the Type 2 changed rows once, and then using them multiple times.

The code starts with the outer INSERT and SELECT clause to handle the changed row inserts at the

end of the MERGE statement. This has to come first because the MERGE is nested inside the

INSERT. The code includes several references to getdate; the code presumes the change was

effective yesterday (getdate()-1) which means the prior version would be expired the day before

(getdate()-2). Finally, following the code, there are comments that refer to the line numbers

1 INSERT INTO Customer_Master

2 SELECT Source_Cust_ID, First_Name, Last_Name, Eff_Date, End_Date, Current_Flag

3 FROM

4 (MERGE Customer_Master CM

5 USING Customer_Source CS

6 ON (CM.Source_Cust_ID = CS.Source_Cust_ID)

7 WHEN NOT MATCHED THEN

8 INSERT VALUES (CS.Source_Cust_ID, CS.First_Name, CS.Last_Name,

convert(char(10), getdate()-1, 101), '12/31/2199', 'y')

9 WHEN MATCHED AND CM.Current_Flag = 'y'

10 AND (CM.Last_Name <> CS.Last_Name) THEN

11 UPDATE SET CM.Current_Flag = 'n', CM.End_date = convert(char(10), getdate()-

2, 101)

12 OUTPUT $Action Action_Out, CS.Source_Cust_ID, CS.First_Name, CS.Last_Name,

convert(char(10), getdate()-1, 101) Eff_Date, '12/31/2199' End_Date, 'y'Current_Flag

13) AS MERGE_OUT

14 WHERE MERGE_OUT.Action_Out = 'UPDATE';

Code Comments

Lines 1-3 set up a typical INSERT statement. What we will end up inserting are the new values of the

Type 2 rows that have changed.

Line 4 is the beginning of the MERGE statement which ends at line 13. The MERGE statement has

an OUTPUT clause that will stream the results of the MERGE out to the calling function. This syntax

defines a common table expression, essentially a temporary table in the FROM clause, called

MERGE_OUT.

Lines 4-6 instruct the MERGE to load Customer_Source data into the Customer_Master dimension

table.

Line 7 says when there is no match on the business key, we must have a new customer, so Line 8

does the INSERT. You could parameterize the effective date instead of assuming yesterday’s date.

Lines 9 and 10 identify a subset of the rows with matching business keys, specifically, where it’s the

current row in the Customer_Master AND any one of the Type 2 columns is different.

Line 11 expires the old current row in the Customer_Master by setting the end date and current row

flag to ‘n’.

Line 12 is the OUTPUT clause which identifies what attributes will be output from the MERGE, if any.

This is what will feed into the outer INSERT statement. The $Action is a MERGE function that tells us

what part of the MERGE each row came from. Note that the OUTPUT can draw from both the source

and the master. In this case, we are outputting source attributes because they contain the new Type

2 values.

Line 14 limits the output row set to only the rows that were updated in Customer_Master. These

correspond to the expired rows in Line 11, but we output the current values from Customer_Source in

Line 12.

Summary

The big advantage of the MERGE statement is being able to handle multiple actions in a single pass

of the data sets, rather than requiring multiple passes with separate inserts and updates. A well

tuned optimizer could handle this extremely efficiently.

