
Import & Export
Utilities

GridSQL

Version 2.0

February 2010

GridSQL Import & Export Utilities

Table of Contents

1. Table of Contents ... 2
2. 1 Introduction .. 3

1.1 Performance Considerations .. 3
3. 2 gs-loader .. 5

2.1 Handling Bad Input Lines .. 7
2.2 Example Usage .. 8

4. 3 gs-impex .. 9
3.1 Format File and Command Line options ... 9
3.2 Importing .. 11
3.3 Exporting .. 12

. Copyright © 2010

Page 2

1 Introduction

The EnterpriseDB GridSQL offers three different methods for importing and exporting
data.

GridSQL supports EnterpriseDB’s COPY command. This can be invoked from
edb-psql, psql, or cmdline. A description of it appears in the GridSQL SQL
Reference Manual.

Another utility described in this document is gs-loader is available that adds
additional features that COPY lacks, such as retries.

The gs-impex utility is for both importing and exporting data to and from the
database. It is not as fast as gs-loader when importing, so using gs-loader or COPY
is recommended.

1.1 Performance Considerations

In populating the database as fast as possible, there are some things to consider.

1. After creating the tables, it is best to load data before creating any indexes or
primary or foreign key constraints. The entire process will complete sooner.

2. Modifying the parameters of the underlying database. You may want to
change the database configuration temporarily to speed up the loading or
data. For example:

a. Temporarily increasing the checkpoint_segments variable can also
make large data loads faster. This is because loading a large amount of
data into EnterpriseDB Advanced Server can cause checkpoints to
occur more often than the normal checkpoint frequency (specified by
the checkpoint_timeout configuration variable). Whenever a
checkpoint occurs, all dirty pages must be flushed to disk. By
increasing checkpoint_segments temporarily during bulk data loads,
the number of checkpoints that are required can be reduced.

b. Increase maintenance_work_mem. Temporarily increasing the
maintenance_work_mem configuration variable when loading large
amounts of data can lead to improved performance. This is because
when a B-tree index is created from scratch, the existing content of
the table needs to be sorted. Allowing the merge sort to use more
memory means that fewer merge passes will be required. A larger
setting for maintenance_work_mem may also speed up validation of
foreign-key constraints.

c. Fsync. Setting fsync in the postgresql.conf file to false is generally
not a good idea since it does not guarantee writes to disk have

occurred, but can be considered to disable temporarily when doing
initial loading of the database. We recommend leaving it set to the
default, true, but wanted to point out this option nonetheless.

2 gs-loader

Syntax:

gs-loader <connect> -t <table> [-c <column_list>] [-i <inputfilename>]
 [-f <delimiter>] [-z <NULL>]
 [-v [-q <quote>] [-e <escape>] -n <column_list>
 [-o] [-a] [-r <prefix>] [-w [<count>]] [-b <filename>]
 [-k <commit_interval>[,<autoreducing_rate>[,<min_interval>]]
 -y <badchunkdir>[-x]]
 where <connect> is –j jdbc:edb://<host>:<port>/<database>?

user=<username>&password=<password>
 or

 [-h <host>] [-s <port>] -d <database> -u <user> [-p <password>]

 -h <host> : Host where XDBServer is running. Default is localhost
 -s <port> : XDBServer's port. Default is 6453
 -d <database> : Name of database to connect to.
 -u <user>, -p <password> : Login to the database
 -t <table> : target table name
 -c <column_list> : comma or space separated list of columns
 -i <inputfilename> : name of file with data to be loaded.
 Standard input is used if omitted
 -f <delimiter> : field delimiter. Default is \t (tab character)
 -z <NULL> : value to indicate NULL. Default is \N
 -v : CSV mode
 -q <quote> : Quote character, default " (CSV mode only)
 -e <escape> : Escape of character. Default is quote character (double)
 (CSV mode only)
 -n <column_list>: Force not null. Values for this column are never
 treated as NULL, as if they was qouted
 -a : remove trailing delimiter
 -o : same as WITH OIDS
 -r <prefix> : ignore data lines starting from specified prefix
 -w [<count>] : verbose- every <count> lines (default 100000)
 display number of lines read
 -b <filename> : file where to output invalid lines for simple checks
 -k <commit_interval>[,<autoreducing_rate>[,<min_interval>]]:
 <commit_interval> : number of lines to commit at a time
 <autoreducing_rate> : if chunk failed, divide into this
 number of chunks and retry
 <min_interval> : do not further divide chunks of specified size
 -y <badchunkdir> : directory where to output failed chunks
 -x keep original format for failed chunks

The gs-loader utility acts as a front-end to the COPY command, and can connect to
either GridSQL or EnterpriseDB Advanced Server. The primary benefit it adds is the
retry functionality, so that data can be loaded even if some of the input lines are
malformed.

Options:

-a Added ending delimiter. By default, a field
delimiter is required only between the fields,
not after the final field. Including –a
indicates that a trailing final delimiter is
present.

-b bad_file Some basic checks will be done on the lines of
the input file, like number of fields. The bad
lines are written to bad_file, but the load
will continue. This should not be confused with
–k, which handles rejected lines from the
backend.

-c column_list List of columns to load. This allows for
specifying a subset of columns in the table
that correspond to the file being loaded up.

-d database The GridSQL database to connect to.
-e escape Only used in conjunction with –v, indicates the

quote escape character.
-f separator Separator. The field delimiter. Default is \\t

(tab character)
-h host Host to connect to
-i inputfile Input file to load from. If not specified, data

is loaded from stdin.
-j jdbcurl The JDBC url to use to connect to the GridSQL

Server
-k chunk_interval This instructs the loader to break up

committing the bulk load operations into
“chunks”, every chunk_interval rows. This is
useful because normally if even a single insert
fails on the back end, the entire load will
fail. Instead, -k will still allow good
segments of data to be committed, and just flag
bad ones that contain problematic input. The
bad chunks are created as new files at the path
location specified by –o. It is recommended to
try and use a fairly high chunk count if
possible, like 100000, for performance reasons
when loading a lot of data.

-o Generate an internal unique row identifier
(WITH OIDs).

-p The password to use when connecting. If not
included, the user will be prompted

-q quote Quote character
-r string Remark (comment) string. Lines that start with

this will be ignored. If used in conjunction
with –b, all bad input lines will be written
out to the bad file, preceded by a comment line
starting with the string here, explaining the
reason for the rejection.

-s port The socket port to connect to. By default it is
6453.

-t table Target table
-u username The username to use when connecting
-v CSV mode. File is comma separated value file.
-w count Write information (verbose). Displays how many

rows have been read every count lines, default
100000.

-x Used in conjunction with –k and –o. Without –x,
rejected lines appear in a format friendly to
the underlying database. With –x, they appear
in the original format.

-y bad_chunk_directory This is used in conjunction with –k, and
instructs the loader where to create bad chunk
files.

-z Value to indicate null. Default is \\N.

2.1 Handling Bad Input Lines

The loader contains additional options for handling input files that may cause errors
when loading. This will allow you to try and continue loading as much data as
possible, even if you encounter an error.

With –k, the input is broken out into the “chunk” row count specified. This allows
smaller discrete segments of the input file to be committed if there are not any
errors. Should an error occur on one of the backends, a new file will be created in
the directory specified by –y. This allows the user to try and clean up any problems
and reload the data, potentially in turn processing it in smaller and smaller chunks
until the data is clean.

The bad chunk files are created in the format:

 <database>_<table>_<internalid>.tbl

There is one file per minimum sized chunk.

The –k option also allows you to specify an auto-reduce rate and minimum row
amount, in addition to the chunk size, separated by commas, without any spaces.
The advantage of this is if a chunk is bad, the loader will automatically break it out
into “line count/auto-reduce rate” separate sub-chunks and to retry loading the rows
and narrow down the particular problematic lines. This process is repeatedly
recursively up until the minimum amount of specified rows.

The exact options to use with –k depend on how clean you think your data is. For
performance, if few errors are expected, a large count number should be used.

Example: -k 100000,10,1.

This will result in a chunk size of 100,000 being used. If a chunk fails, that is broken
out into 10 sub-chunks, resulting in chunks of 10,000 lines being used. Those that
fail will be broken out to 1,000, then 100, then 10, and finally 1. The loader will
have loaded up all of the lines that it could; the only remaining lines in the bad
chunk files are the ones that it could not load up.

2.2 Example Usage

gs-loader.sh –d BIGDB –u myuser –p mypassword –h localhost
-i /home/extendb/mig/order_fact.tbl -t orders -f '|'
-k 100000,20,1 –y /home/extendb/mig/bad

3 gs-impex

Like gs-loader, gs-impex can also be used to import data. It offers a little more
flexibility at the cost of much slower load speeds. Therefore, it is recommended to
use gs-loader for loading data.

On the other hand, gs-impex includes the ability to export data from arbitrary data
sources.

Modes

There are 2 operating modes, import and export, the modes of which are mutually
exclusive. Import is invoked with the “-i” and export with –x, where in either case it
is followed by the source or target file.

An optional format file may be used with the “-f” option to allow more complex
mapping information to appear. If the import is relatively simple, the user can also
just enter the desired options on the command line.

3.1 Format File and Command Line options

Importing

 [INFILE=file_name]
 [TARGET=table_name]
 [OVERWRITING=[0|1] (default is 0)
 | IGNORE=[0|1]] (default is 0) (at most only one of these two can be set)
 [[DELIMITER=delimiter]
 |[column_name delimited_position, [n…]]]
 [ADD_TRAILING_DELIMITER=[0|1]] (default is 0)
 [TERMINATOR=terminator]
 [LOCK=[0|1]] (default is 0)
 [SILENT=[0|1]] (default is 0)
 [START_LINE=line_num]
 [END_LINE=line_num]
 [POSITION_FORMATTED { column_name start:stop, [n...] }]
 [QUOTED=quote_character]
 [COMMIT_INTERVAL=integer]
 [MAX_ERRORS=integer]
 [DATA_ERROR_FILE=filename]

 [DRIVERCLASS=driverclass] (default to extendb.connect.XDriver)]
 [JDBC_URL=jdbc_url of target database]

Exporting

 [EXTRACT=query_string]
 [OUTFILE=file_name]
 [TRIM_TRAILING_SPACES=[0|1] (default is 0)

A table appears below that describes both the command line options and the
format file parameters, depending on the preferred mode of usage.

Format File Value Command
Line
Option

Description

-f Specifies a format file to use to allow more complex mapping information to
appear. Followed by the file name for the formatting. Command line option
only.

INFILE -i Import (-i), followed by the source file. If no source file specified, data is
read from stdin.

Required for command line operation

TARGET -t The target table, if importing

OUTFILE -x Export (-x), followed by the query sting and output or target file name.
Required for command line operation

EXTRACT (query string) -y The SQL query to run to get the data. If it is just a single word, it is assumed
to be the name of the table and will do a “SELECT * FROM <table>”.

OVERWRITING or IGNORE -w, -g Used for handling input records that duplicate existing records on primary
key values. If OVERWRITING is specified, rows will get overwritten with the
new data, provided they have the same value for primary or unique index
as the row to be replaced. If IGNORE is specified, rows will be ignored with
the new data if they have the same value for primary or unique index as the
row to be replaced. If neither option is present, it will always try and insert
the row (default). These are mutually exclusive.

DELIMITER -d Default delimiter is TAB (\t). Optionally, in the format file, it can be followed
by matching column names with the positional delimited items, to allow the
data to be mapped. Command line option for mapping column names is not
available.

ADD_TRAILING_DELIMITER -a Indicates that a final delimiter follows the last field.

TERMINATOR -z Default is carriage return

LOCK -l Whether or not to lock the entire table

SILENT -h If Omitted, the number of rows processed will be displayed every 10,000
rows. Default is verbose

START_LINE -s Default will begin at 1. This is useful if importing from a large file and

something goes wrong after 210,000 records for example. The import can
be restarted with the same import file, but told to start on line number
210,001.

END_LINE -e Default will be the end of file

POSITION_FORMATTED -p Used to match column_name with start and stop character positions of data
in the row, for non-delimited, fixed format import files.

QUOTED -q Used if data is quoted, surrounded by “ or ‘.

COMMIT_INTERVAL -c Default is to commit after each insert. Otherwise, batches will be used, and
the batch will be committed after every COMMIT_INTERVAL number of
rows. It is important to use this for faster loads.

If exporting, this is the fetch size used.

In both cases, the default value is 1000.

MAX_ERRORS -m Default is 1. Set to any positive integer to instruct the loader to continue
processing up until at least that many errors occur. Setting to 0 (zero) will
ignore all errors, and always continue to load the next line from the file.

DATA_ERROR_FILE -r Specifies target file for rows that could not be loaded up successfully. This
way, the user can first try and load entire file, then just work with
problematic data in a separate file that could not be loaded up, and try
again.

JDBC_URL -j The JDBC URL for connecting to the server. For example:
jdbc:xdb:BIGDB:myuser/mypassword@extendbhost

DRIVERCLASS -C The driver class name, if exporting from other databases, for example, like:
com.edb.Driver.

TRIM_TRAILING_SPACES -T If set, strings that are read from the source that have trailing spaces in them
will be trimmed when writing to the output file. That is useful for saving disk
space for large files, but it can impact your data- if you were expecting a
column to contain a single space, for example, it will now be empty.

3.2 Importing

A command line option should be available for use with all the commands unless
there are mapping columns used, as available POSITION_FORMATTED. If the column
order differs in the source file from the target table, the user must use a format file
to describe the mapping and cannot do this via the command line.

Example:

Note that we must preceed & with backslash here.

gs-impex –c 1000 –d '|' -i customer.dat –t customer

–j jdbc:edb://host:6453/BIGDB?
user=usermyuser\&password=mypassword

This will import the customer.data file into customer, with a pipe delimiter and a
batch size of 1000, using the specified jdbc string.

3.3 Exporting

Examples:

Note that we must preceed & with backslash here.

gs-impex –x orders.out –t orders
–j jdbc:edb://host:6453/BIGDB?

user=myuser\&password=mypassword

gs-impex –x orders.out –y orders

–j jdbc:edb://host:6453/BIGDB?
user=usermyuser\&password=mypassword

gs-impex –x orders.out –y “select * from orders”

–j jdbc:edb://host:6453/BIGDB?
user=usermyuser\&password=mypassword

The following example demonstrates using a format file and exporting from a
PostgreSQL database:

gs-impex –f format.txt

where format.txt is:

EXTRACT=select * from atable
DRIVERCLASS=org.postgresql.Driver
JDBC_URL=jdbc:postgresql://localhost/mydb?
user=myuser&password=mypassword
OUTFILE=/tmp/atable.txt

