
GridSQL Planning Guide

EnterpriseDB GridSQL

Version 2.0

February 2010

GridSQL Planning Guide

Table of Contents

1. Table of Contents ... 2
2. 1 Introduction .. 3

1.1 Purpose .. 3
1.2 Overview .. 3

3. 2 Platform ... 4
2.1 Operating System .. 4
2.2 Environment .. 4
2.3 Hardware .. 4

4. 3 Hardware Considerations .. 5
3.1 Introduction .. 5
3.2 Nodes ... 5

3.2.1 Storage ... 5
3.2.1.1 Storage Requirements ... 6

3.2.2 Networking / Interconnectivity ... 6
3.2.3 Memory .. 6
3.2.4 CPU .. 6

3.3 The Coordinator ... 7
3.4 Networking / Interconnectivity ... 7

5. 4 Database Schema .. 8
4.1 Introduction .. 8
4.2 Tables ... 8

4.2.1 Replicating Tables .. 8
4.2.2 Internode Partitioning ... 8
4.2.3 Constraint Exclusion Partitioning .. 10
4.2.4 How Joins Affect Partition & Replication Strategy 11

4.2.4.1 Another Example ... 12
4.2.5 Dimensional Data Modeling ... 14

4.3 The Role of the Coordinator ... 14
6. 5 Redundancy, Backup and Recovery .. 15

 ... 15

Copyright 2010

Page 2

1 Introduction

1.1 Purpose
The purpose of this document is to provide information to users of EnterpriseDB
GridSQL to allow them to properly plan for its installation and configuration. To help
achieve this, hardware purchasing considerations and database schema are
discussed.

1.2 Overview

GridSQL is a parallel, clustered database system designed for data warehousing
solutions. Its objective is to allow queries involving large volumes of data to execute
in parallel across multiple servers in order to return results back more quickly.

The software utilizes other systems, called nodes, each of which houses its own
independent database. Each underlying database is Postgres Plus 8.3 or later, or
PostgreSQL, running in a shared-nothing architecture, typically using commodity PC-
based hardware.

To allow for quick response times, the database administrator (DBA) employs
strategies to partition each table in the database, typically based on a computed
hash of a column. The optimizer intelligently recognizes when to join tables locally or
when it needs to send data to other nodes. Various other techniques are used to
achieve linear or near-linear scalability.

2 Platform

2.1 Operating System

We recommend using Linux as the operating system that the nodes will run on,
although we do not recommend any particular distribution.

2.2 Environment

GridSQL is written in Java and communicates with the underlying databases via
JDBC. Java Runtime Environment 5.0 or later is required. At the same time, user
applications can connect to GridSQL with EnterpriseDB client drivers for JDBC or
ODBC, or with any PostgreSQL compatible driver.

Although EnterpriseDB GridSQL runs in a Java Virtual Machine, it should be pointed
out that most of the resource intensive work is done within the native underlying
databases, with GridSQL coordinating the work.

GridSQL has a single process that executes on the coordinator node. In a simple
configuration, the other nodes merely have the underlying database utilized. For
greater scalability, a GridSQL Agent process may execute on each node.

2.3 Hardware

Typically PC-based servers are used, due to cost. More detailed information appears
in the Hardware Considerations section.

3 Hardware Considerations

3.1 Introduction

A discussion of what to consider when purchasing hardware appears below, along
with some recommendations.

3.2 Nodes

Within a node there are various components that influence the total performance of
the system, in particular, the CPU, memory, the bus speed, networking components,
and storage.

Note the order of the list just stated is in approximate order of the fastest to slowest
components. Hard disks are electro-mechanical devices with moving parts and are
much slower than CPUs of course.

We also want to avoid making any single component a bottleneck and achieve some
balance on each system, but while doing so at a reasonable cost.

3.2.1 Storage

The nodes in the GridSQL cluster will need to read from disk often. To achieve good
performance, you should consider using RAID, such as RAID 10 (striping and
mirroring) or RAID-5 (striping with parity), with a good disk controller. This allows
you to get multiple drives working at the same time. If the SCSI interface is used,
you may want to get a controller card with multiple channels to achieve greater data
transfer rates from the drives. SATA drives also offer a very good value.

We are mainly concerned with read performance. In addition to read performance
gains through striping, the other advantage of using RAID is redundancy. In a RAID-
5 or RAID 10 (1+0) configuration, you can achieve both greater throughput through
multiple drives, while allowing the node to be able to continue working if there is a
drive failure. With many nodes and drives in your cluster, you will likely have a drive
failure at some point, so using RAID should be considered a necessity.

We recommend RAID 10 for redundancy and performance.

Another option is to use software RAID, which appears to be gaining more
proponents recently, given the ever-faster processors available.

The drives themselves should have a reasonably fast seek time. You may consider
purchasing drives with a high RPM rate.

You can either have direct attached storage, or make use of a SAN. Using a SAN also
has the benefit of potentially preparing stand-by nodes for better availability.

You should consider having separate devices for temp space, apart from where table
data is stored. GridSQL allows you to define tablespaces, where a logical tablespace
group maps to tablespaces on each of the nodes. You can also use this in
determining placement of your tables as well. This same device can be used when
configuring the PostgreSQL parameter temp_tablespaces.

If indexes are used, you may also want to consider putting indexes on a separate
device.

3.2.1.1 Storage Requirements

When deciding on how many individual nodes you want with how many hard disks
for each, you should have a good idea of the size of your database. Take into account
any indexes that you may create. If you replicate tables or denormalize data, you will
need more space (more information on denormalization appears in the Database
Schema section). Finally, you should have a lot of extra space for temp tables.
GridSQL uses temp tables to store intermediate results as queries are processed. It
is recommended to not use more than 60% of the available database storage on a
node, but this will vary depending on your schema and queries.

3.2.2 Networking / Interconnectivity

A lot of data will be moving around amongst the nodes, so high-speed connectivity is
required between them. Gigabit Ethernet offers the best value in accomplishing this.
There are other alternatives such as Infiniband, but it is more expensive.

3.2.3 Memory

One of the most important ways to get more performance out of a system is to have
ample memory. More memory allows the database to use more cache. More cache
means more of the database can be stored in memory, reducing disk accesses. A
caveat here is that for large volumes of data and data warehousing queries that need
to scan entire tables, cache rates may be low. Nonetheless, ample memory is a
necessity, and helps out tremendously with internal processing such as sorting and
intermediate results.

When purchasing your systems, get as much memory as you can within your budget.
Keep in mind that it is not just the underlying tables in the database that will use it.
Temporary tables will be created and more memory will be available for them as well
means less swapping to disk.

3.2.4 CPU

When deciding on a CPU, it is usually best to look for the best performing one at the
most reasonable cost. Very often the very fastest available will only offer minor
improvements in speed while costing significantly more than a processor slightly
slower. You may be better off spending your hardware budget elsewhere.

The coordinator should be a multi-core or multi-processor system.

3.3 The Coordinator

You will designate one of the nodes as the coordinator. This is also typically where
metadata information is stored. The load will be a little heavier on the coordinator, so
it is a good idea to consider getting extra memory and perhaps a multi-core or multi-
processor system for the coordinator.

3.4 Networking / Interconnectivity

As mentioned above for the nodes, Gigabit Ethernet over copper offers the best
value. If you choose that, accordingly, you will want to purchase Gigabit Ethernet
switches.

You may want to consider configuring the nodes in the cluster on their own subnet,
for better security, while making the non-coordinator nodes accessible only to the
coordinator.

4 Database Schema

4.1 Introduction

One of the most critical factors in designing your decision support database is the
database schema you chose. Due to the nature of how GridSQL works, we want to
allow for as much parallelization as possible. Strategies for achieving this appear
below.

Our examples use tables from the TPC-H test schema to better demonstrate various
options, with lineitem acting as a fact table.

4.2 Tables

4.2.1 Replicating Tables

Replicating in this context refers to creating an exact duplicate of a table on all of the
nodes. We want to do this for smaller lookup tables, like a state_code table
containing all of the states in the United States. It would not make much sense to
partition a table like this that just has 50 rows. We will spend a lot of time
unnecessarily copying them around. It is best to just keep a copy of the table on all
nodes. We can do this by using the REPLICATED clause in the CREATE TABLE
statement.

Example:

CREATE TABLE region (
r_regionkey integer not null,
r_name char(25) not null,
r_comment varchar(152)) REPLICATED

Now, when region is joined with another table in the query, the join can take place
locally on each node in parallel immediately, without having to worry about shipping
rows around.

If you have a multi-dimensional schema, you should consider replicating your
dimension tables.

4.2.2 Internode Partitioning

In order to achieve fast query times involving large tables, we want to keep all of the
nodes busy working while a query is executing. To do that, we want to distribute
data in a given table across all of the nodes.

To best explain how this works, some examples are used.

With the CREATE TABLE statement, the DBA can specify how he or she wants to
partition the table. This consists of specifying a column and on which nodes to
distribute the data. For example:

CREATE TABLE orders (
o_orderkey INTEGER NOT NULL,
o_custkey INTEGER NOT NULL,
o_orderstatus CHAR(1) NOT NULL,
o_totalprice DECIMAL(15,2) NOT NULL,
o_orderdate DATE NOT NULL,
o_orderpriority CHAR(15) NOT NULL,
o_clerk CHAR(15) NOT NULL,
o_shippriority INTEGER NOT NULL,
o_comment VARCHAR(79) NOT NULL) PARTITIONING KEY o_orderkey
ON ALL

“ON ALL” here indicates that all nodes defined for the available cluster should be
used. We could have also specified a subset of nodes by giving their node id numbers
as well. In practice, it makes sense to utilize all of the available nodes, unless you
are using a dedicated coordinator and wish to keep partitioned data off of it.

The partitioning key in the example is o_orderkey. A hash will be calculated based on
o_orderkey’s value for each row and will be mapped to one of the nodes to
determine where the row will reside. An even distribution across all nodes will be
achieved.

Now, if we were to execute a singleton SELECT such as

SELECT * FROM orders WHERE o_orderkey = 1000

GridSQL will recognize that o_orderkey is the partitioning key, and will calculate a
hash value to determine which node is responsible for value 1000. It will then obtain
the data only from the single, required node.

In your decision support environment, you will more likely be executing larger
queries, like

SELECT MAX(o_totalprice)
FROM orders
WHERE o_orderdate >= ‘01/01/2003’

This type of query scales very well. In this case, GridSQL will execute that exact
same query on each of the nodes. In a 16 node system, it will receive 16 different
results, each of which is the MAX(o_totalprice) that is on the particular node. It will
then take the MAX value of those 16 results, to arrive at the final MAX result.

4.2.3 Constraint Exclusion Partitioning

Note: this is different from GridSQL’s internode partitioning.

Postgres Plus Advanced Server possesses the ability to “partition” within a database
instance via check constraints. This allows the DBA to create segments for a table
that contain ranges of values, for example. A table named orders could be
partitioned into monthly subtables, allowing queries that include a condition based on
order date to scan with a smaller set of data, and therefore have a faster query time.

This is a powerful feature that should be taken advantage of. Constraint exclusion
partitioning coupled with GridSQL’s partitioning across multiple nodes will result in
significantly faster query response times; a large table can be broken into multiple
subtables, each of which is partitioned across multiple nodes in the GridSQL cluster.

An example appears below.

CREATE TABLE orders (
 o_orderkey INTEGER NOT NULL,
 o_custkey INTEGER NOT NULL,
 o_orderstatus CHAR(1) NOT NULL,
 o_totalprice DECIMAL(15,2) NOT NULL,
 o_orderdate DATE NOT NULL,
 o_orderpriority CHAR(15) NOT NULL,
 o_clerk CHAR(15) NOT NULL,
 o_shippriority INTEGER NOT NULL,
 o_comment VARCHAR(79) NOT NULL)
PARTITIONING KEY o_orderkey ON ALL;

CREATE TABLE orders_199201
(CHECK (o_orderdate BETWEEN ‘19920101’::DATE AND ‘19920131’::DATE))
INHERITS (orders);

CREATE TABLE orders_199202
(CHECK (o_orderdate BETWEEN ‘19920201’::DATE AND ‘19920228’::DATE))
INHERITS (orders);

:

Any query like “SELECT count(*) from orders where o_orderdate between ‘1992-01-
01’ and ‘1992-01-15’” will only use tuples found from the orders_199201 subtable
(and the orders table, which should be left empty).

Note that when loading data, you must insert data into the proper subtable.
Using the above example, in the current implementation, loading into orders
directly will not automatically insert the data into the correct subtable; you
must do so directly.

Another important consideration when creating subtables constraints is to be aware
that the current implementation is a bit data type sensitive, and you might find that
the EnterpriseDB executor is not taking full advantage of eliminating subtables.
In the case of dates, we recommend using the above syntax to cast it a date type, as
in

 CHECK (o_orderdate BETWEEN ‘19920101’::DATE AND ‘19920131’::DATE)

Leaving it as either just a date, or as a quoted string may cause queries to not be
executed optimally. This depends on how the CHECK constraints are formulated and
how the WHERE conditions are formulated. The above check constraint syntax
handles various date constructs (quoted, cast) in SELECT WHERE clauses properly.

4.2.4 How Joins Affect Partition & Replication Strategy

Now that we have covered some of the basics, some more advanced examples are
discussed.

Assume we have the following table, lineitem, which acts as a fact table in our
database:

CREATE TABLE lineitem (
l_lineitemkey INTEGER NOT NULL,
l_orderkey INTEGER NOT NULL,
l_partkey INTEGER NOT NULL,
l_suppkey INTEGER NOT NULL,
l_linenumber INTEGER NOT NULL,
l_quantity DECIMAL(15,2) NOT NULL,
l_extendedprice DECIMAL(15,2) NOT NULL,
l_discount DECIMAL(15,2) NOT NULL,
l_tax DECIMAL(15,2) NOT NULL,
l_returnflag CHAR(1) NOT NULL,
l_linestatus CHAR(1) NOT NULL,
l_shipdate DATE NOT NULL,
l_commitdate DATE NOT NULL,
l_receiptdate dATE NOT NULL,
l_shipinstruct CHAR(25) NOT NULL,
l_shipmode CHAR(10) NOT NULL,
l_comment VARCHAR(44) NOT NULL) PARTITIONING KEY l_lineitemkey
ON ALL

We want to execute the following query:

SELECT
l_orderkey,
SUM(l_extendedprice * (1 - l_discount)) as revenue,
o_orderdate,
o_shippriority

FROM
Orders INNER JOIN lineitem ON l_orderkey = o_orderkey

WHERE
 l_shipdate > '1994-09-20'
GROUP BY

l_orderkey,
o_orderdate,
o_shippriority

ORDER BY
revenue desc,
o_orderdate;

Note that a join occurs on lineitem.l_orderkey = orders.o_orderkey. Assume that in
looking at our table definitions, the table orders was partitioned on o_orderkey, and
lineitem was partitioned on l_lineitemkey. It could be that a given o_orderkey value
is on node 7 and needs to join with the equivalent l_orderkeys on nodes 4, 9 and
13. Since they are on different nodes, GridSQL will need to ship data around for
joining. While we take advantage of all the nodes we have and it will execute fine, it
will not be as quite as fast as if the needed rows were on the same node.

Now assume that l_lineitem was instead partitioned on l_orderkey. In this case,
GridSQL will recognize that the join condition occurs on expressions that match the
partitioning scheme of the tables involved. It will therefore perform the join locally
on each node, instead of needing to ship rows.

This example illustrates the importance of choosing good partitioning keys. Although
the database may be used in environments where ad-hoc querying tools are
available, the DBA should try and choose sensible partitioning keys for joins that are
likely to occur.

As previously mentioned, if you have a multi-dimensional schema, you should
consider replicating your dimension tables. If you have a particularly large dimension
table that is used often with a fact table, you may want to partition both of these on
their respective join keys.

4.2.4.1 Another Example

We will examine another more complex example. It is somewhat contrived, as well
as with some possible alternatives discussed, just to illustrate things to consider
when determining how to determine your schema and partitioning.

SELECT
 c_custkey,
 c_name,
 sum(l_extendedprice * (1 - l_discount)) as revenue,
 c_acctbal,
 n_name,
 c_address,
 c_phone,
 c_comment
FROM
 customer INNER JOIN orders ON c_custkey = o_custkey
 INNER JOIN lineitem ON l_orderkey = o_orderkey
 INNER JOIN nation ON c_nationkey = n_nationkey
WHERE
 o_orderdate >= '1994-07-01'
 AND o_orderdate < ‘1994-07-02’
 AND l_returnflag = 'R'
GROUP BY
 c_custkey,
 c_name,
 c_acctbal,
 c_phone,

 n_name,
 c_address,
 c_comment
ORDER BY revenue desc;

Assume that nation is REPLICATED on all of the nodes here, with customer
partitioned on c_custkey, orders on o_orderkey and lineitem on l_orderkey. GridSQL
will need to execute this query in a couple of steps. There are various alternatives
that the Optimizer will evaluate, including:

 It could join customer and nation first, then join these results with orders and
lineitem.

 It could join orders and lineitem first, then join these results with customer
and nation.

The join pairs customer-nation and orders-lineitem can each take place at the
individual nodes without row shipping occurring. The customer-nation join involves
nation, a replicated look-up table, so no rows need to be shipped. The orders-
lineitem join involves a parent-child join, so no rows need to be shipped here either.

In either case, there is an intermediate step of rows having to be shipped. The query
will scale well, however. Consider the case where customer is replicated. If that were
the case, we could perform a join on all 4 of the tables at once locally at the nodes
and eliminate the additional step.

Replicating customer on all of the nodes will help in cases like this, but there are
things to consider and trade-offs.

 The cardinality of orders to customer and the number of nodes. This may
influence how close to linear the query can scale as more nodes are added.

 The other expected queries. If users perform a lot of queries only against the
customer table without joining with others, it will be executed on just one
node instead of others, and you lose parallelism. Also, joins will occur against
a bigger table on each node, whatever the join columns may be. In cases like
this, it is probably not a good idea to replicate.

o Note that if there are a lot of queries just against this single customer
table, another alternative would be for the DBA to set up two customer
tables; one that is replicated and one that is partitioned. It is up to
your ETL process to load up both tables. Also, reports that users run
will have to choose the appropriate table.

We could have also set up our schema so that o_custkey is the partition column for
orders. The drawback to that though is that lineitem can no longer be joined locally
with orders on l_orderkey without shipping rows.

To summarize, there are various considerations and trade-offs to weigh when
choosing your schema. It is also best to be familiar with the types of queries that will
be run against your database to guide decisions. Finally, the schema you decide on
will influence your ETL process to ensure data is loaded up properly.

4.2.5 Dimensional Data Modeling

One should focus on creating a dimensional data model with facts and dimensions. It
is recommended that smaller dimension tables be designated as REPLICATED. That
is, an exact copy of each table appears on all of the nodes. In this way, there is no
need to ship this data around constantly. The meaning of “small” will depend on the
total size of the data warehouse, but if you have large fact tables with millions of
rows, dimensions with less than 100,000 rows should be replicated. If you have facts
with billions of rows, dimensions with row counts even up to seven figures may be
replicated.

If you have a particularly large dimension table, you may want to partition fact tables
that join with it on the foreign key that it uses to join with that dimension table, as
well as partition the dimension table itself on its primary key. This way, all joins take
place locally without any row shipping.

4.3 The Role of the Coordinator

The Coordinator does a bit more work than the other nodes in the system. It
performs the optimization and query planning, as well as directs the execution of the
query, synching up instructions for work going on at other nodes.

With this in mind, you may want to consider making one node a dedicated
coordinator, particularly if your system has 8 or more nodes. A coordinator that is
dedicated would guide the queries on the other nodes but does not participate in
them.

Coordinators can also house replicated tables. This allows for serving quick queries
where a reporting app may, for example, get all of the possible values in a look-up
table like region, while freeing up the other nodes to do the heavy lifting.

Again, the decision to go with such a configuration largely depends on the number of
nodes you have. If just using a 4 node system, it often is not worth having a
dedicated coordinator. You could however consider making it slightly more powerful
than the other nodes.

5 Redundancy, Backup and Recovery

The current version of GridSQL has no built-in redundancy. Keep in mind that the
component most likely to fail is going to be a hard disk, and by using a RAID
configuration like RAID 0+1 or RAID-5, you are well protected against such a failure.

GridSQL will typically be used in reporting or data warehousing type of scenarios so
while important and will be added, it is not as critical as a high volume OLTP
database.

One solution is to rely on HA solutions such as from Steel Eye or Red Hat.

You could have your data out on a SAN, and have a stand-by node ready to point to
the failed node’s data. The gridsql.config file would have to be modified for the node,
and GridSQL stopped and restarted.

You can also replicate the metadata database and user-created databases on the
nodes.

For replication, you can rely on EnterpriseDB Replication or Slony for a manual
stand-by configuration. Note that any schema changes (ALTER TABLE) may require
re-snapshotting the modified table. To failover to a stand-by node, the node
information is changed in gridsql.config, and GridSQL is stopped and restarted.

To make efficient use of the nodes in the cluster, you should consider creating the
replicated copies of one node on another node. For example, node 1’s databases are
replicated to node 2, node 2’s to node 3, and so on.

The current version relies on the backup and restore programs available for the
underlying database, or optionally with the help of GridSQL’s utilities. This includes
full backups and incremental or log file backups. Individual nodes may be backed up
at the same time.

