
SQL Reference

EnterpriseDB GridSQL

Version 2.0

February 2010

EnterpriseDB GridSQL SQL Reference

Table of Contents

 Table of Contents ... 2
1 Introduction .. 4

1.1 Overview .. 4
2 Data Types .. 5
3 Identifiers & Literals ... 6
4 Expressions .. 7

4.1 Expressions ... 7
4.2 Operators .. 7

4.2.1 Logical Operators ... 7
4.2.2 Mathematical Operators .. 9
4.2.3 Bit Operators ... 9
4.2.4 Date/Time Operators .. 9

5 Functions .. 10
5.1 Aggregate Functions ... 10
5.2 Statistical aggregate functions ... 11
5.3 Mathematical Functions ... 13
5.4 Date & Time Functions .. 16
5.5 String and Character Functions .. 18
5.6 Other Functions .. 22

6 SQL Commands ... 23
6.1 Data Definition Statements .. 23

6.1.1 CREATE TABLESPACE .. 23
6.1.2 CREATE TABLE ... 24
6.1.3 DROP TABLE .. 29
6.1.4 TRUNCATE TABLE ... 29
6.1.5 ALTER TABLE … ADD COLUMN .. 29
6.1.6 ALTER TABLE … DROP COLUMN .. 29
6.1.7 ALTER TABLE … ADD PRIMARY KEY ... 30
6.1.8 ALTER TABLE … ADD FOREIGN KEY ... 30
6.1.9 ALTER TABLE … DROP CONSTRAINT .. 31
6.1.10 ALTER TABLE … DROP PRIMARY KEY ... 31
6.1.11 ALTER TABLE … ALTER COLUMN .. 31
6.1.12 ALTER TABLE … OWNER ... 32
6.1.13 ALTER TABLE … SET TABLESPACE .. 32
6.1.14 RENAME TABLE .. 32
6.1.15 CREATE INDEX ... 32
6.1.16 DROP INDEX .. 33
6.1.17 CLUSTER ... 33
6.1.18 CREATE VIEW .. 33
6.1.19 DROP VIEW .. 34

6.2 Data Manipulation Statements ... 35
6.2.1 INSERT ... 35
6.2.2 UPDATE .. 35
6.2.3 DELETE ... 36

Copyright © 2010

Page 2

EnterpriseDB GridSQL SQL Reference

6.2.4 SELECT ... 37
6.2.5 EXPLAIN ... 38

6.3 Importing and Exporting via COPY .. 39
6.4 Users and Privileges .. 40

6.4.1 CREATE USER .. 40
6.4.2 ALTER USER .. 41
6.4.3 DROP USER ... 41
6.4.4 GRANT .. 41
6.4.5 REVOKE .. 42

6.5 Other Commands ... 43
6.5.1 SHOW DATABASES ... 43
6.5.2 SHOW TABLES ... 43
6.5.3 SHOW VIEWS .. 44
6.5.4 SHOW TABLE <table> ... 44
6.5.5 SHOW VIEW <view> .. 44
6.5.6 SHOW INDEXES ON <table> ... 44
6.5.7 SHOW CONSTRAINTS ON <table> ... 45
6.5.8 SHOW USERS .. 45
6.5.9 SHOW STATEMENTS ... 46
6.5.10 KILL .. 46
6.5.11 ANALYZE ... 46
6.5.12 VACUUM .. 47
6.5.13 EXECUTE DIRECT .. 47

Copyright © 2010

Page 3

1 Introduction

1.1 Overview

EnterpriseDB GridSQL’s supported SQL is very similar to that of Postgres Plus
Advanced Server and PostgreSQL. To be clear, using GridSQL in conjunction with the
underlying database does not mean that you will have access to the full functionality
of that particular database. Nonetheless, GridSQL allows for a lot of customization in
the gridsql.config file to allow the DBA to define additional functions as well as map
GridSQL commands to the underlying database.

This is not intended to be a comprehensive analysis of the SQL language,
but is intended to provide information regarding the supported SQL and its
syntax, and to point out noteworthy GridSQL implementation details to bear
in mind.

2 Data Types

The following data types are supported:

Data Type Comments
BIGINT, INT8
BIT, VARBIT
BLOB, BINARY, BYTE, IMAGE, RAW,
LONG RAW, VARBINARY

Maps to BYTEA

BOOLEAN (May not be supported by all underlying
databases)

CHAR[ACTER] (length) Width is fixed to length.
CIDR IPv4 and IPv6 networks
DATE Accepts format YYYY-MM-DD or YYYYMMDD
DATETIME Combination of date and time
DOUBLE PRECISION, FLOAT8 8 byte floating point number
DEC[IMAL] (length, decimals) Mapped to NUMERIC
FLOAT[(length, decimals)],
SMALLFLOAT, FLOAT4
INET IPv4 and Ipv6 hosts and networks
INT[EGER], INT4
INTERVAL
 [YEAR|MONTH|DAY|HOUR|MINUTE
 TO
 YEAR|MONTH|DAY|HOUR|MINUTE]

For time intervals

MACADDR MAC addresses
NCHAR[ACTER] (length) For multi-language support, like CHAR
NUMERIC[(length[,decimals])],
MONEY, SMALLMONEY, YEAR
NVARCHAR[ACTER] (length) For multi-language support, like VARCHAR
REAL[(length, decimals)]
SERIAL, BIGSERIAL 4 and 8 byte serial
SMALLINT, INT2, TINYINT
TEXT, CLOB, LONG, LONG VARCHAR,
LONGTEXT, LVARCHAR, MEDIUMTEXT

Acts as a CLOB

TIME Accepts hh:mm:ss or hhmmss format
TIMESTAMP[(length)],
SMALLDATETIME

Combination of date and time, with optional
fractional second precision

VARCHAR[2] (length)
or CHAR[ACTER] VARYING (length),
TINYTEXT

Varying number of characters, with a maximum
of specified length

3 Identifiers & Literals

Identifiers behave similar to Postgres Plus. They may be double-quoted, in which
case they are case sensitive. If they are not quoted, they are treated as if they were
typed in lower case. Please keep this in mind as you work with databases, tables and
columns.

Literal string values should be enclosed by single quotes.

4 Expressions

4.1 Expressions

Logical expressions are typically found as part of the WHERE clause of various
statements in determining the rows that will be effected by the statement. The
operands of a logical expression to be evaluated by a logical operator may in turn be
a logical expression, or an SQL expression of any of the supported data types.

Operators are discussed in the following section. In addition, available functions are
covered in a later chapter.

4.2 Operators

The logical and mathematical operators that are used in expressions that GridSQL
recognizes appear below, in ascending order of precedence by line.

Parentheses can also be used in expression to determine precedence.

4.2.1 Logical Operators

OR
AND
NOT
BETWEEN
CASE, WHEN, THEN, ELSE
=, !=, <>, >=, >, <=, <,
IS, LIKE, ILIKE, SIMILAR TO, IN, ~
BETWEEN

~ matches
~* matches, case insensitive
!~ not matches
!~* not matches, case insensitive

The between operator allows for the comparison of a range of values.

Example:

SELECT *
FROM customer
WHERE est_income BETWEEN 100000 and 200000

CASE

CASE expression
 WHEN compare_expression THEN result_value
 [WHEN compare_expression THEN result_value ...]

 [ELSE result_value]
END

CASE
 WHEN condition THEN result_value
 [WHEN condition THEN result_value ...]
 [ELSE result_value]
END

There are two forms of CASE. The first form allows for comparing a single expression
against a list of possible values, while the second form allows for various conditions
to be evaluated.

In either case, an ELSE clause may appear to specify a default value.

Example:
SELECT CASE custtype

WHEN ‘P’ THEN ‘Platinum’
WHEN ‘G’ THEN ‘Gold’
WHEN ‘S’ THEN ‘Silver’
ELSE ‘Standard’

 END
FROM customer
WHERE state = ‘CA’

SELECT CASE
WHEN custtype = ‘P’ THEN ‘Red Carpet’
WHEN ordercount <= 1 THEN ‘New’
ELSE ‘Standard’
END

IS

Example:

SELECT *
FROM customer
WHERE lastname IS NULL

LIKE

LIKE is used to match part of a string. Wildcard characters are used as part of a
string pattern.

Example: Select all customers whose names begin with the letter B.

SELECT *
FROM customer
WHERE lastname LIKE ‘B%’

IN

IN is used to compare an expression to a set of expressions

Example: Select all customers in New England states

SELECT *
FROM customer
WHERE state IN (‘NH’, ‘VT’, ‘CT’, ‘MA’, ‘ME’)

4.2.2 Mathematical Operators

|/ square root
||/ cube root
! factorial
!! factorial (prefix operator)
@ absolute value
-, +
*, /, DIV, MOD
^
- (numeric negation)

Standard mathematical operators ‘-‘, ‘+’, ‘*’, and ‘/’ are available. In addition the
following are available: ‘^’ (raise to a power), DIV (divisor—no remainder), and
MOD (Modulo- remainder).

4.2.3 Bit Operators

& bitwise AND
| bitwise OR
bitwise XOR
<< bitwise shift left
>> bitwise shift right

4.2.4 Date/Time Operators

The following describes the operators and their usage that are applicable to
Date/Time expressions.

Operator Example Result
+ date '2001-09-28' + integer '7' date '2001-10-05'
+ date '2001-09-28' + time '03:00' timestamp '2001-09-28 03:00'
- date '2001-10-01' - date '2001-09-28' integer '3'
- date '2001-10-01' - integer '7' date '2001-09-24'

5 Functions

The following functions are supported as part of SQL Expressions. You may also map
functions from one to another or create templates that are substituted at runtime,
which is useful for user-defined functions. Please see the Administrator’s Guide for
more details on how to set that up in the gridsql.config file.

5.1 Aggregate Functions

Aggregate functions differ from regular functions in that regular functions are applied
on a row by row basis, where as aggregate functions apply to a group of rows, either
the entire set of rows being returned based on the specified conditions, or a subset
of that, as determined by the GROUP BY clause.

AVG(n)

Calculates the average or mean of a numeric expression.

BIT_AND(expression)

Returns the bitwise AND of all non-null input values, or null if none.

BIT_OR(expression)

Returns the bitwise OR of all non-null input values, or null if none.

BOOL_AND(expression)

Returns true if all input values are true, otherwise false.

BOOL_OR(expression)

Returns true if at least one input value is true, otherwise false.

COUNT(*)
COUNT([DISTINCT] expr)

COUNT(*) counts the number of rows that make up a group of rows.
COUNT(DISTNCT expr) counts the number of unique appearances of the expression
in the projected results.

EVERY(expression)

Returns equivalent to BOOL_AND.

MAX(expr)

Calculates the maximum value for a group of rows, whether the expression is of a
numeric or string type.

MIN(expr)

Calculates the minimum value for a group of rows, whether the expression is of a
numeric or string type.

SUM(n)

Calculates the SUM of an expression for a group of rows.

5.2 Statistical aggregate functions

CORR(Y, X)

Calculates the correlation-coefficient of the two numbers.

COVAR_POP(Y, X)

Calculates the population covariance of the two numbers.

COVAR_SAMP(Y, X)

Calculates the sample covariance of the two numbers.

REGR_AVGX(Y, X)

Calculates the average of the independent variable(X) of the regression
line.

REGR_AVGY(Y, X)

Calculates the average of the dependent variable(Y) of the regression
line.

REGR_COUNT(Y, X)

Calculates the number of non-null number pairs to fit the regression
line.

REGR_INTERCEPT(Y, X)

Calculates the y-intercept of the least-squares-fit linear equation
determined by the (X, Y) pairs.

REGR_R2(Y, X)

Calculates the square of the correlation coefficient.

REGR_SLOPE(Y, X)

Calculates the slope of the least-squares-fit linear equation
determined by the (X, Y) pairs.

REGR_SXX(Y, X)

Calculates the sum of squares of the independent variable.

REGR_SXY(Y, X)

Calculates the sum of products of independent times dependent variable.

REGR_SYY(Y, X)

Calculates the sum of squares of the dependent variable.

STDDEV(n)

Calculates the standard deviation of a group of rows.

STDDEV_POP(expression)

Calculates the population standard deviation of the input values.

STDDEV_SAMP(expression)

Calculates the sample standard deviation of the input values.

VARIANCE(n)

Calculates the statistical variance of a group of rows.

VAR_POP(expression)

Calculates the population variance of the input values.

VAR_SAMP(expression)

Calculates the sample variance of the input values.

5.3 Mathematical Functions

ABS(n)

Calculates the absolute value of the numeric expression.

CBRT(DOUBLE PRECISION)

Returns cube root of the given number.

CEIL[ING](n)

Calculates the ceiling of the numeric expression, that is, the next highest integer.
CEIL(1.2) is equal to 2, and CEIL(-1.2) is equal to –1.

EXP(DOUBLE PRECISION or NUMERIC)

Returns exponential of the given number.

FLOOR(DOUBLE PRECISION or NUMERIC)

Returns largest integer not greater than argument.

LN(n)

Calculates the natural logarithm of numeric expression n.

LOG(n1)
LOG(n1, n2)

In the first form with one parameter, it is equivalent of LN(), the natural logarithm
function.
In the second form, it calculates the logarithm of n1 for base n2.

MOD(n1, n2)

Modulo. Calculates the remainder of n1 divided by n2.
This is equivalent to n1 mod n2 or n1 % n2.

PI()

Returns the value of Pi.

POWER(n1, n2)

Calculates n1 to the power of n2.

RANDOM()

Returns random value between 0.0 and 1.0.

ROUND(n)

Calculates n rounded to the nearest integer.

SETSEED(DOUBLE PRECISION)

Sets seed for subsequent random() calls (value between 0 and 1.0).

SIGN(n)

Calculates the sign of numeric expression n. The return value is –1 if n is negative,
0, if n is 0, or 1 is n is positive.

SQRT(n)

Calculates the square root of n.

TRUNC(n1)
TRUNC(n1,n2)

In the first form, with a single parameter, the decimal places are truncated.

In the second form, with n1 > 0, the number n1 is truncated to n2 decimal places. If
n2 < 0 then n2 places in front of the decimal point are set to 0.

WIDTH_BUCKET(op NUMERIC, b1 NUMERIC, b2 NUMERIC, count INTEGER)

Returns the bucket to which operand would be assigned in an equidepth histogram
with count buckets, in the range b1 to b2.

Trigonometric Functions

ACOS(n)

Returns the arc cosine of n.

ASIN(n)

Returns the arc sin of n.

ATAN(n)

Returns the arc tangent of n.

COS(n)

Returns the cosine of n.

COT(n)

Returns the cotangent of n.

DEGREES(n)

Returns the radians value of n converted to degrees.

RADIANS(n)

Returns the degrees value of n converted to radians.

SIN(n)

Returns the sine of n.

TAN(n)

Returns the tangent of n

5.4 Date & Time Functions

AGE (timestamp [, timestamp)

Returns the age or age difference of the timestamp.

CLOCK_TIMESTAMP()

Returns current date and time.

CURRENT_DATE

Returns the current date.

CURRENT_TIME

Returns the current time.

CURRENT_TIMESTAMP

Returns the current date and time as a timestamp (datetime) type.

DATE_PART(s, timestamp)

Returns the part element specified in the first argument from the timestamp.

Example:

select DATE_PART(‘month’, ‘2001-12-31’) from table1

Returns

12

DATE_TRUNC(s, timestamp)

Returns the timestamp truncated to the specified precision.

EXTRACT (field from [timestamp|interval])

Extracts the specified field from the timestamp

select EXTRACT (day from timestamp ’1999-12-31’)

Returns

31

ISFINITE (timestamp/interval)

Tests for finite timestamp

JUSTIFY_DAYS(interval)

Adjusts interval so 30-day time periods are represented as months.

JUSTIFY_HOURS(interval)

Adjusts interval so 24-hour time periods are represented as days.

JUSTIFY_INTERVAL(interval)

Adjusts interval using justify_days and justify_hours, with additional sign
adjustments.

LAST_DAY(timestamp)

Returns the last day of the month represented by the given date.

LOCALTIME [(int)]

Returns time of day

LOCALTIMESTAMP [(int)]

Returns current timestamp

MONTHS_BETWEEN(TIMESTAMP1,TIMESTAMP2)

Returns the number of months between two dates.

NEXT_DAY(TIMESTAMP,TEXT)

Returns the first occurrence of the given weekday strictly greater than the given
date.

NOW()

Returns current timestamp with time zone.

STATEMENT_TIMESTAMP()

Returns current date and time (at the start of current statement).

SYSDATE

Returns current date and time.

TIMEOFDAY()

Returns the current date and time as a timestamp.

5.5 String and Character Functions

ASCII(s)

Returns the ASCII value of string s.

BIT_LENGTH(s)

Returns the number of bits in the string.

BTRIM(string TEXT [,characters TEXT])

Removes the longest string consisting only of characters in characters (a space by
default) from the start and end of string.

CHAR_LENGTH(s)
CHARACTER_LENGTH(s)

Returns the number of characters in the string.

CHR(INTEGER)

Returns the character with the given ASCII code.

CONCAT(str1, str2)

Perfoms string concatenation.

CONVERT(str using conversion_name)

Change encoding using specified conversion name.

DECODE(expr, expr1a,expr1b [,expr2a,expr2b]...[,default])

Finds first match of expr with expr1a, expr2a, etc. When match found, returns
corresponding parameter pair, expr1b, expr2b, etc. If no match found, returns
default. If no match found and default not specified, returns null.

DECODE(string TEXT,type TEXT)

Decode binary data from string previously encoded with encode. Parameter type is
same as in encode.

ENCODE(data BYTEA,type TEXT)

Encode binary data to ASCII-only representation. Supported types are: base64, hex,
escape.

INITCAP(s)

Returns the string passed in transformed such that the first letter in upper case, and
the other letters are in lower case.

INSTR(string, set, [start, [occurrence]])

Finds the location of a set of characters in a string, starting at position start in the
string string, and looking for the first, second, third and so on occurrences of the set.

LENGTH(s)

Returns the number of characters in string s.

LOWER(s)

Returns string s with all characters converted to lower case.

LPAD(s1, n[, s2])

Returns string based on string s1 set to length n, with any extra padding needed
taken from s2. The s2 is optional and by default a space is used.

LTRIM(s1 [, s2])

Remove the longest string containing only characters from s2 (a space by default)
from the start of string s1.

MD5(string)

Calculates the MD5 hash of string, returning the result in hexadecimal.

NVL(expr1, expr2)

If expr1 is not null, then nvl returns expr2.

NVL2(expr1,expr2,expr3)

Returns expr3 if expr1 is null, otherwise returns expr2.

OCTET_LENGTH(s)

Returns the number of bytes in the string

OVERLAY(s1 PLACING s2 FROM int [FOR int])

Replaces characters in string s1 with those from s2 starting at the position specified.

PG_CLIENT_ENCODING()

Current client encoding name.

POSITION(s1 IN s2)

Returns the character position in which string s1 is found in string s2.

QUOTE_IDENT(s)

Returns the given string in double quoted form. Quotes are added only if necessary
(i.e., if the string contains non-identifier characters or would be case-folded).

QUOTE_LITERAL(s)

Returns the given string suitably quoted to be used as a string literal in an SQL
statement string. Embedded quotes and backslashes are properly doubled.

REPEAT(string TEXT,number INTEGER)

Repeats string the specified number of times.

REPLACE(string TEXT,search_string TEXT,[replace_string]TEXT)

Replaces one value in a string with another. If replace_string is not specified, the
search_string value when found, is removed.

RPAD(s1,n,s2)

Returns string based on string s set to length n, with any extra padding needed
taken from s2.

RTRIM(s1)

Returns string s1 with trailing spaces removed.

SPLIT_PART(string TEXT, delimiter TEXT, field INTEGER)

Splits string on delimiter and return the given field (counting from one).

STRPOS(string,substring)

Location of specified substring in the string.

SUBSTR(s1, n1, n2)
SUBSTRING(s1 FROM n1 [FOR n2])

Returns the substring of string s1, starting at position n1, continuing for n2
characters.

TO_ASCII(string text[, encoding text])

Converts string to ASCII from another encoding (only supports conversion from
LATIN1, LATIN2, LATIN9, and WIN1250 encodings).

TO_HEX(number)

Converts number to its equivalent hexadecimal representation.

TRANSLATE(string TEXT, from TEXT, to TEXT)

Any character in string that matches a character in the from set is replaced by the
corresponding character in the to set.

TRIM(leading | trailing | both c from s1)

Remove the longest string containing only the characters c (a space by default) from
the start, end, or both ends of the string s1.

UPPER(s)

Returns the string s converted into all upper case letters.

5.6 Other Functions

CURRENT_USER()

Returns the current user.

CAST(expr1 as datatype)

Casts expression to datatype.

DATABASE()

Returns the current database being used.

VERSION()

Returns the version of the database server being used.

USER()

Returns the current user.

6 SQL Commands

6.1 Data Definition Statements

6.1.1 CREATE TABLESPACE

Syntax:

CREATE TABLESPACE tablespace
 LOCATION 'path' ON NODE[S] nodenum [,nodenum...]
 [,LOCATION 'path' ON NODE[S] nodenum [,nodenum...]]

EnterpriseDB supports the creation of tablespaces. This gives database
administrators more flexibility in specifying locations of tables on physical disks. For
example, a DBA may want to put a particularly large and often-used fact table on its
own set of RAID hard drives, while keeping other tables in another location. Or, the
DBA may want to put indexes on a table in a different location than the table itself.

Tablespaces are not required. If not used, all tables will be created in the default
tablespace on the underlying database on each node.

GridSQL allows you to conveniently assign a logical tablespace name that groups
together and corresponds to tablespaces on the individual EnterpriseDB instances on
the individual nodes. Ideally, nodes should be equal in processing capability and
configuration, so you could specify the same file system path location for all nodes.
There is also the capability to specify different locations on different nodes, if
desired.

Once a tablespace has been defined, it can be referenced when creating tables or
indexes.

A table can be moved to a separate tablespace by using the ALTER TABLE SET
TABLESPACE command.

Note: the paths specified for the tablespaces must be empty directories that
have already been created, and the EnterpriseDB postmaster process must
have permission to write to this directory.

6.1.2 CREATE TABLE

Syntax:

CREATE [TEMP] TABLE table_name (create_definition, ...)
[partitioning_options]
[INHERITS (table_name)]
[WITH XROWID | WITHOUT XROWID]
[TABLESPACE tablespace]

CREATE TABLE AS:

CREATE [TEMP] TABLE table_name [(create_definition, ...)]
[partitioning_options]
[INHERITS (table_name)]
[WITH XROWID | WITHOUT XROWID]
[TABLESPACE tablespace]
AS select

create_definition:
 column_name data_type [NOT NULL | NULL] [DEFAULT default_value]
 [PRIMARY KEY]
 or
 constraint_definition

constraint_definition: [CONSTRAINT constraint_name]
 PRIMARY KEY (index_column_name,...)
 or FOREIGN KEY [CONSTRAINT symbol] (index_column_name,...)
 [reference_definition]
 or CHECK (expression)

data_type: (one of the data types that appear in the Data Type section

:
reference_definition:
 REFERENCES table_name [(index_column_name,...)]

partitioning_options:
 [PARTITIONING KEY column_name] ON ALL
 | [PARTITIONING KEY column_name] ON [NODE[S]] node_num[,node_num …]
 | REPLICATED
 | ROUND ROBIN ON (ALL | NODES node_num[,node_num …])

The CREATE TABLE statement is used to create tables in databases. It can be
executed only by a user of type DBA or RESOURCE.

Table names may not start with the temporary table character sequence defined in
xdb.tempTablePrefix in the gridsql.config file.

Tablespaces

The optional TABLESPACE clause allows a tablespace to be specified, to determine
the location of the table data. See the CREATE TABLESPACE command for more
details.

Internode Partitioning

The partitioning_options allow the DBA to specify a partitioning strategy, which is
very important to the performance of the system. Additional information appears
in the GridSQL Planning Guide, and should be read carefully.

Partitioning allows the DBA to distribute the data amongst multiple nodes, either
based on round robin partitioning, or a partitioning column. The value in this column
is used to calculate a hash value, which is mapped to a destination node. (GridSQL
does not support range partitioning or round-robin, just hash partitioning.)

This distribution of data allows EnterpriseDB GridSQL to parallelize queries. In
choosing a partitioning key, it is important to take into consideration what other
tables this table will likely join with. That way, if these other tables are partitioned on
the corresponding join column, the GridSQL Optimizer will recognize that local joins
can occur without having to resort to any row shipping.

It is recommended to use all available nodes when choosing which nodes to use for
the partitioned table.

Normally, one would probably want to select a column to designate as the
partitioning column. Designating a partitioning column allows local joins to occur for
other tables that are similarly partitioned, in cases the tables have a parent-child
relationship. ROUND ROBIN partitioning may be useful, too, however, in such cases
where a table typically does not join with any other tables (or just replicated ones),
and there is no natural column to select as a partitioning column.

Another important partitioning_option is REPLICATED. This is appropriate for
“lookup” tables, such as a state code table. Replicated tables appear on all nodes,
with each node containing the exact same data. This also allows joins to occur on all
nodes without having to ship any data. Depending on your database schema and
queries, a DBA may even consider making other larger tables replicated, but caution
is urged.

A table may also simply appear on a single node or subset of the available nodes, via
the ON NODE clause, but it is recommended to use all nodes.

**Note that if no partitioning table options are specified, the table is
partitioned on the on the first element of the primary key across all nodes.
If none such key exists, the first column in the table is chosen as the
partitioning key automatically.

Examples:

CREATE TABLE part (p_partkey INTEGER NOT NULL,
 p_name VARCHAR(55) NOT NULL,
 p_mfgr CHAR(25) NOT NULL,
 p_brand CHAR(10) NOT NULL,
 p_type VARCHAR(25) NOT NULL,
 p_size INTEGER NOT NULL,
 p_container CHAR(10) NOT NULL,
 p_retailprice DECIMAL(15,2) NOT NULL,

 p_comment VARCHAR(23) NOT NULL)
PARTITIONING KEY p_partkey ON ALL;

CREATE TABLE nation (n_nationkey INTEGER NOT NULL,
 n_name CHAR(25) NOT NULl,
 n_regionkey INTEGER NOT NULL,
 n_comment VARCHAR(152))
REPLICATED;

Constraint Exclusion Partitioning

EnterpriseDB has the ability to partition within a database instance via check
constraints. This allows the DBA to create segments for a table that contain ranges of
values, for example. A table named orders could be partitioned into monthly
subtables, allowing queries that include a condition based on order date to scan with
a smaller set of data, and therefore have a faster query time.

This is a powerful feature that should be taken advantage of. Constraint exclusion
partitioning coupled with GridSQL’s partitioning across multiple nodes will result in
significantly faster query response times; a large table can be broken into multiple
subtables, each of which is partitioned across multiple nodes in the cluster.

Note that the postgresql.conf parameter constraint_exclusion is off by default
and must be set to on in order to take advantage of this feature.

An example appears below.

CREATE TABLE orders (
 o_orderkey INTEGER NOT NULL,
 o_custkey INTEGER NOT NULL,
 o_orderstatus CHAR(1) NOT NULL,
 o_totalprice DECIMAL(15,2) NOT NULL,
 o_orderdate DATE NOT NULL,
 o_orderpriority CHAR(15) NOT NULL,
 o_clerk CHAR(15) NOT NULL,
 o_shippriority INTEGER NOT NULL,
 o_comment VARCHAR(79) NOT NULL)
PARTITIONING KEY o_orderkey ON ALL;

CREATE TABLE orders_199201
(CHECK (o_orderdate BETWEEN '19920101'::DATE AND '19920131'::DATE))
INHERITS (orders);

CREATE TABLE orders_199202
(CHECK (o_orderdate BETWEEN '19920201'::DATE AND '19920228'::DATE))
INHERITS (orders);
:

 A query like “SELECT o_orderdate, count(*) from orders where o_orderdate
between ‘1992-01-01’ and ‘1992-01-15’ GROUP BY o_orderdate” will only use tuples
found from the orders_199201 subtable (and the orders table, which should be left
empty).

Note that when loading data, you must insert data into the proper subtable.
Using the above example, in the current implementation, loading into orders
directly will not automatically just insert the data into the correct subtable.

Another important consideration when creating subtables is to be aware that the
current implementation is a bit datatype sensitive, and you might find that the
underlying EnterpriseDB executor is not taking full advantage of eliminating
subtables.

In the case of dates, we recommend using the above syntax to cast the date type, as
in

CHECK (o_orderdate BETWEEN ‘19920101’::DATE AND ‘19920131’::DATE)

Leaving it as either just a date, or as a quoted string may cause queries in Postgres
Plus Advanced Server (or PostgreSQL) to not be executed optimally. This depends on
how the CHECK constraints are formulated and how the WHERE conditions are
formulated. The above check constraint syntax appears to handle various date
constructs (quoted, cast) in SELECT WHERE clauses properly.

Temporary Tables

Temporary tables (or temp tables) may be created using the CREATE TEMP TABLE
command. A temporary table is accessible only for the session that created it. After
the session ends, the temp table will be dropped automatically.

When a temporary table is created in GridSQL, one or more temp tables will also be
created on the underlying database. The gridsql.config configuration related
properties appear below.

gridsql.config parameter Default Description
xdb.tempTablePrefix TMP Temporary table prefix to use in underlying

database. Various databases have different
conventions, like “TEMP.” or “#”.

xdb.sqlcommand.createTempTable
.start

CREATE
TABLE

Start of command for CREATE TABLE statement for
creating temp table on the underlying database.

xdb.sqlcommand.createTempTable
.suffix

WITHOUT
OIDS

Suffix to add at the end of CREATE statements
for temp tables.

Note that GridSQL currently uses non-temporary tables in the temporary table
implementation by default.

Column Definitions

Columns may be of any of the data types listed in the data type chapter. In addition,
the user may specify whether or not nulls are allowed with NULL or NOT NULL, and
include a DEFAULT clause to specify any default value for the column if none is
specified as part of an insert. A column may also be designated as a primary key, or
reference a foreign key.

Constraint Definitions

The CREATE TABLE statement may also include primary key or foreign key constraint
definitions. Alternatively, these can also be specified as separate statements as part
of ALTER TABLE. Please see ALTER TABLE for a more detailed discussion about
constraints.

Xrowid

In previous versions of GridSQL, an internal row identifier was always created for
each row to aid with distributed constraint checking. This is no longer required if you
have a primary key or unique index on a table. If you do not use distributed
constraints (e.g., a tuple in one table references a tuple in another), you do not need
to worry about a unique key for each row. For compatibility, one can still create
XROWID by including the WITH XROWID clause. The implicit default is WITHOUT
XROWID.

6.1.3 DROP TABLE

Syntax:

DROP TABLE table_name

The DROP TABLE command is used to drop a table from the database.

If any foreign key constraints exist and other tables reference this one, the DROP will
not succeed. The foreign key constraint from the other table must be dropped first.

6.1.4 TRUNCATE TABLE

Syntax:

TRUNCATE table_name

The TRUNCATE command effectively deletes all the rows in a table. It is much faster
than DELETE without any WHERE condition since it will not scan the entire table.

6.1.5 ALTER TABLE … ADD COLUMN

Syntax:

ALTER TABLE table_name
 ADD [COLUMN] create_definition

This command is used to add columns to an existing table.

6.1.6 ALTER TABLE … DROP COLUMN

Syntax:

ALTER TABLE table_name
 DROP COLUMN column_name

This command is used to drop a column from a table in the database.

6.1.7 ALTER TABLE … ADD PRIMARY KEY

Syntax:

ALTER TABLE table_name
 ADD PRIMARY KEY (column_name [,column_name...])

A primary key may be added either as part of the CREATE TABLE statement, or as
part of ALTER TABLE.

EnterpriseDB GridSQL will try and have constraints be enforced locally on the nodes
if possible. That means, if the first column in the primary key is also the partitioning
column for a table, GridSQL will not enforce the primary key itself, and will allow the
underlying database to do it, since we know that no two rows with the same key can
appear on different nodes. In addition, if the table is a lookup table and replicated to
all nodes, or it just appears on a single node, GridSQL will also leave it to the
underlying database to be enforced.

If, however, the table is partitioned, and the first column in the primary key is not
the partitioning column, GridSQL will enforce the primary key in case of INSERTs or
UPDATEs. Distributed constraints like this are expensive to enforce, so if your
database does a considerable amount of such write operations, you may not
want to create any distributed constraints. If just doing periodic loads, it should
not be an issue.

If a unique index already exists on the primary key columns, it will be used.
Otherwise, the command is issued on the underlying nodes.

6.1.8 ALTER TABLE … ADD FOREIGN KEY

Syntax:

ALTER TABLE table_name
 ADD [CONSTRAINT constraint_name]
 FOREIGN KEY (column_name [, column_name...])
 REFERENCES table_name (column_name [, column_name…])

Foreign key constraints may be added by either the CREATE TABLE or ALTER TABLE
command.

Foreign keys help to guarantee referential integrity in your database. The referring
table’s corresponding values must exist as a primary key or unique index in the
referenced table.

EnterpriseDB GridSQL will try and have constraints be enforced locally on the nodes
if possible. If we are referencing a replicated lookup table for example, GridSQL will
leave it to the underlying nodes to enforce, and will create a foreign key constraint
on each node locally.

In addition, if the table is partitioned and we are referencing another partitioned
table, if the first column in the referenced and referring key in each of the tables is
also the partitioning key for each, we will also rely on the underlying databases to
enforce the constraint.

In other cases, local enforcement is not possible. In those cases, GridSQL will
provide enforcement of foreign keys for INSERT, UPDATE and DELETE operations, as
a distributed constraint.

Distributed constraints like this are expensive to enforce, so if your database does a
considerable amount of such write operations, you may not want to create any
distributed constraints. If just doing periodic loads, it should not be an issue.

6.1.9 ALTER TABLE … DROP CONSTRAINT

Syntax:

ALTER TABLE table_name
 DROP CONSTRAINT constraint_name

This command is used to drop an existing primary key or foreign key constraint. If
the constraint had been created after an index on which it was based, only the
constraint definition is dropped, and not the previously created index. If an internal
index needed to be created for the constraint, it will be dropped as well, however.

If no constraint name was specified at the time of its creation, the internally
generated name may be determined by issuing a SHOW CONSTRAINTS command.

6.1.10 ALTER TABLE … DROP PRIMARY KEY

Syntax:

ALTER TABLE table_name
 DROP PRIMARY KEY

The DROP PRIMARY KEY clause of the ALTER TABLE command is used to remove the
primary key for a table. If the primary key constraint was created after a unique
index on which it was based, the index will not be dropped. If an internally
generated index was created, it will be dropped along with the primary key.

6.1.11ALTER TABLE … ALTER COLUMN

Syntax:

ALTER [COLUMN] column TYPE type [USING expression]
ALTER [COLUMN] column SET DEFAULT expression
ALTER [COLUMN] column DROP DEFAULT
ALTER [COLUMN] column { SET | DROP } NOT NULL

This command is used to modify the definition of a column, changing its type, its
default, and whether or not in can be null. These can also be combined into a single
ALTER command.

6.1.12 ALTER TABLE … OWNER

Syntax:

ALTER TABLE table OWNER TO new_owner

This variant of ALTER TABLE is used modify the owner of the table.

6.1.13 ALTER TABLE … SET TABLESPACE

Syntax:

ALTER TABLE table_name SET TABLESPACE tablespace

This variant of ALTER TABLE is used to move a table from one tablespace to another.
More information about tablespaces can be found in the topic of CREATE
TABLESPACE.

6.1.14 RENAME TABLE

Syntax:

RENAME TABLE table_name TO new_table_name

This command allows the DBA or owner of a table to rename a table.

6.1.15 CREATE INDEX

Syntax:

CREATE [UNIQUE] INDEX index_name
 ON table_name [USING index_type]
 (column_name [[ASC|DESC|operator_class],...)
 [TABLESPACE tablespace]
 [WHERE predicate]

This command is used to create indexes for tables on the specified columns. The
optional TABLESPACE clause allows a tablespace to be specified.

If the UNIQUE modifier is specified, the set of values in the columns must be unique.
If the table is partitioned and the first column in the index is the partitioning column,
GridSQL will rely on the underlying nodes to enforce the unique index. If that is not
the case, GridSQL will enforce the unique index itself. Note that enforcing a
unique distributed index will significantly slow down INSERT and UPDATE
operations.

The USING clause allows for other types of indexes to be used, if the underlying
database supports it.

The WHERE predicate allows for the support of partial indexes.

6.1.16 DROP INDEX

Syntax:

DROP INDEX index_name [ON table_name]

This command is used to drop indexes on tables. It can be executed by the DBA or
owner of the table.

6.1.17 CLUSTER

Syntax:

CLUSTER index_name ON table_name
CLUSTER table_name
CLUSTER

Clustering a table on an existing index causes the table to be reordered based on the
specified index, to allow for faster access.

Note that when new rows are added to the table they will not be in clustered order.
Issuing a CLUSTER command with just the table_name parameter will recluster the
table on the specified index. Issuing a CLUSTER command without any parameters
will recluster all clustered tables.

As a practical matter, if your tables get quite large, this command may execute for a
long time. Using CLUSTER may just be practical if you have a loading strategy where
you create subtables (see CREATE TABLE) based on a window of time of data, and
where this data is fairly static. Then, you can CLUSTER the particular subtable just
once and leave it alone after that.

6.1.18 CREATE VIEW

Syntax:

CREATE VIEW view_name [(column1[,column…])] AS select_statement

This statement allows views to be defined from one or more tables as SELECT
statements.

GridSQL views are not updatable; one cannot update data in a view, or insert data
into a view.

Views are not materialized, and are evaluated as part of a query at execution time.

6.1.19 DROP VIEW

Syntax:

DROP VIEW view_name

This statement is used to drop a view.

6.2 Data Manipulation Statements

6.2.1 INSERT

Syntax:

INSERT [INTO] table_name [(column_name,...)]
 VALUES ((expression),...)

INSERT [INTO] table_name [(column_name,...)]
 SELECT ...

The INSERT command is used to insert data into the table. There are two forms of
the command, one for single row inserts, and one for multiple row inserts by taking
the results of a SELECT statement.

If the table is replicated, inserted rows will be inserted into the replicated table on all
nodes.

If the table is on a single node, the rows will just be inserted into the table on that
node.

If the table is partitioned, a hash value is calculated based on the partitioning column
of the table, and the row to be inserted will be inserted at the appropriate target
node.

For the INSERT to succeed, no unique index, primary key or referenced foreign key
constraint violations may occur.

6.2.2 UPDATE

Syntax:

UPDATE table_name
 SET [table_name.]column_name1=expression1

 [, [table_name.]column_name2=expression2 ...]
 [WHERE where_definition]

The UPDATE command is used to update data within a table.

If a table is replicated, the table will be updated the same on all of the nodes.

If the table is on a single node, the rows will just be update in the table on that
node.

For the UPDATE to succeed, no unique index, primary key or referenced foreign key
constraint violations may occur.

If any distributed foreign key or primary key constraints exist, the execution of
UPDATE may slow down considerably while these are checked cross-node. If the
UPDATE affects the partitioning column of the table, the updated row may physically
move from one node to another on the underlying database.

6.2.3 DELETE

Syntax:

DELETE FROM table_name
 [WHERE where_definition]

The DELETE command is used to delete data within a table.

If a table is replicated, the rows from the table will be deleted in the same manner
on all of the nodes.

If the table is on a single node, the rows will just be deleted in the table on that
node.

For the DELETE to succeed, no foreign key constraint references to this table may be
violated.

If any distributed foreign key references exist, the execution of DELETE may slow
down considerably while these are checked cross-node.

6.2.4 SELECT

Syntax:

SELECT
 [DISTINCT | UNIQUE | ALL]
 select_expression,...
 [INTO [TEMPORARY | TEMP] [TABLE] new_table]
 [FROM table_references
 [WHERE condition]
 [GROUP BY {unsigned_integer | column_name | expression}...]
 [HAVING where_definition]
[UNION select…...]
 [ORDER BY {unsigned_integer | column_name | expression} [ASC |
DESC] ,...]
 [LIMIT n] [OFFSET m]

table_references may be
:
table_reference, table_reference
table_reference [CROSS] JOIN table_reference
table_reference [INNER] JOIN table_reference join_condition
table_reference NATURAL JOIN table_reference ON (column[,column_name...])
table_reference LEFT [OUTER] JOIN table_reference join_condition

Where table_reference is defined as:

table_name [[AS] alias]
and join_condition is defined as:

ON conditional_expr | USING (column_list)

When using USING, column_list must be column names that exist in both
tables.

WHERE condition_expr:

[NOT] condition_expr [{AND | OR} condition_expr]

condition_expr:

expression operator [ANY|ALL] expression
expression [NOT] BETWEEN expression AND expression
expression [NOT] {IN|EXISTS} ({select_statement|expression_list})
[{table|alias].]column IS [NOT] NULL
[{table|alias].]column [NOT] {LIKE] } string

An expression itself can be a string literal, mathematical expression, the result of a
SELECT, etc. More information on expressions and operators can be found in the
Expressions chapter earlier in this document.

6.2.5 EXPLAIN

Syntax:

EXPLAIN [VERBOSE] select_statement

EXPLAIN is used to view the output of the execution plan for the specified SELECT
statement.

By default it will just display a summary. When the VERBOSE clause is included, more
details including the node involvement are displayed.

6.3 Importing and Exporting via COPY

Syntax:

COPY tablename [(column [, ...])]
 FROM { 'filename' | STDIN }
 [[WITH]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']

COPY { tablename [(column [, ...])] | (query) }
 TO { 'filename' | STDOUT }
 [[WITH]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']

GridSQL’s COPY command is similar to PostgreSQL’s command.

The first form, COPY FROM, is used for importing data into a table from a file or
STDIN. The second form, COPY TO, is used for exporting data from a table out to a
file or STDOUT.

Note that you can also use the gs-loader utility for better error handling, which is
described in the Import and Export Utilities guide.

6.4 Users and Privileges

This section contains the SQL commands for creating and manipulating users and
granting and revoking privileges.

A valid user must be specified when connecting to the GridSQL database. When a
database is first created with createdb, the user is required to assign a DBA
username and password.

A user must be granted access to a table before being able to access it. By default, a
user who creates a table has all privileges on that table.

There are 3 classes of users: DBA, RESOURCE, and STANDARD. DBA users have
Database Administration privileges. RESOURCE users can create tables. STANDARD
users cannot create tables, but can access the database.

6.4.1 CREATE USER

Syntax:

CREATE USER username PASSWORD password [user_class]

user_class = [DBA|RESOURCE|STANDARD]

By default, user_class is RESOURCE.

This command may only be executed by a DBA user.

STANDARD users may only access tables for which they have been granted
permission (or via PUBLIC, of course). They may also create temp tables.

RESOURCE users are the same as STANDARD, only they also have the ability to
create tables.

DBA users have all of the permissions of a RESOURCE user, but can additionally
perform other tasks: starting and stopping a database, and executing ANALYZE,
CREATE USER, DROP USER, and ALTER USER.

6.4.2 ALTER USER

Syntax:

ALTER USER username PASSWORD password
ALTER USER username user_class
ALTER USER username PASSWORD password user_class

This command may only be executed by a DBA user, or by the same user wanting to
change his or her own password.

A user cannot be demoted to the user class STANDARD if they own one or more
tables. In such a case, this will fail. The DBA should instead first either drop the
tables or reassign ownership via ALTER TABLE using the OWNER clause.

6.4.3 DROP USER

Syntax:

DROP USER username

This command may only be executed by a DBA user, and removes the user from the
database.

6.4.4 GRANT

Syntax:

GRANT privilege_list ON [TABLE] table_list TO grantee_list

privilege_list ::= ALL | privilege[,privilege…]
 privilege ::= SELECT | INSERT | UPDATE | DELETE |

 REFERENCES | INDEX | ALTER

table_list ::= * | table[,table…]

 grantee_list ::= grantee[,grantee]

grantee ::= PUBLIC | user_name

The GRANT command is used to grant privileges on a table, and may only be
executed by a DBA user, or the owner of a table.

The privileges for SELECT, INSERT, UPDATE and DELETE are for those respective
commands.

The REFERENCES privilege refers to the ability to create foreign key constraints,
which requires REFERENCES privilege in both the referrer and referee tables.

The INDEX privilege allows the user to create and drop indexes.

The ALTER privilege allows the user to execute the ALTER table command.

6.4.5 REVOKE

Syntax:

REVOKE privilege_list ON [TABLE] table_list FROM grantee_list

privilege_list ::= ALL | privilege[,privilege…]
 privilege ::= SELECT | INSERT | UPDATE | DELETE |

 REFERENCES | INDEX | ALTER

table_list ::= * | *.* | table[,table…]

 grantee_list ::= grantee[,grantee]
 grantee ::= PUBLIC | user_name

REVOKE is used to revoke privileges on a table.

Note that we only revoke what has previously been granted. If a table has been
granted permission to PUBLIC, revoking for user1 will still allow user1 to access the
table because the table is still accessible to the PUBLIC.

6.5 Other Commands

GridSQL also includes some administrative commands for administering the database
and finding out information.

Command Description
SHOW DATABASES Lists all of the user-created GridSQL

databases
SHOW TABLES Lists all of the tables that exist in the

current database
SHOW VIEWS Lists all of the views that exist in the

current database
DESCRIBE <table> Lists the columns and their definitions of

the specified table
DESCRIBE <view> Displays the view definition for the

specified view
SHOW INDEXES ON <table> Lists all indexes for <table>
SHOW CONSTRAINTS ON
<table>

Lists the following types of constraints for
<table>: primary keys, foreign keys, foreign
key references

SHOW USERS Lists all defined users and their class
SHOW STATEMENTS Lists all of the currently executing SQL

statements
KILL <request_id> Kills execution of the request id specified.

Request ids can be obtained by executing the
SHOW STATEMENTS command

ANALYZE Updates the internal statistics in the
database for creating better execution plans

VACUUM Potentially frees up space in the database
EXECUTE DIRECT Bypasses GridSQL and executes SQL commands

on the underlying database directly.

6.5.1 SHOW DATABASES

Lists all of the user-created GridSQL databases. Columns:

Column Description
Database Database name
Status The status of the database, can be either

Started or Down.
Nodes A comma separated list of all of the node id

numbers that the database is on.

6.5.2 SHOW TABLES

Lists the columns and their definitions of the specified table.

Column Description
Table_name The name of the table
Table_partitioning_column If the table is partitioned, the column used

in partitioning, otherwise it is null for
single-node or replicated tables.

Table_nodes A comma separated list of all of the node id
numbers that the table is on.

6.5.3 SHOW VIEWS

Lists the views defined in the database.

Column Description
View_name The name of the view

6.5.4 SHOW TABLE <table>

Lists the columns and their definitions of the specified table.

Column Description
Column_name The name of the column
Sql_data_type Data type of column
Type_name The data type name
Is_nullable If YES, allows nulls, otherwise NO
Key If when the table was defined, this

single column was denoted as the
primary key

Default The default value of the column

6.5.5 SHOW VIEW <view>

Displays the view definition and any named view columns.

Column Description
View_text The text defining the view
View_column The comma separated list of the

column names defined by the creator
of the view, if any.

6.5.6 SHOW INDEXES ON <table>

Lists all indexes for specified table.

Column Description
Indexname The name of the index
Isunique If YES, the index only allows

unique values.

Columns A comma-spearated list of the
columns that make up the index.

6.5.7 SHOW CONSTRAINTS ON <table>

Lists all constraints for specified table, including primary keys, foreign keys, foreign
key references.

Column Description
Constname Constraint name
Type The constraint type
Sourcetable If a foreign key constraint, the

referencing table
Sourcecolumns If a foreign key constraint, the

referencing columns
Desttable If a foreign key constraint, the

referenced table.
Destcolumns If a foreign key constraint, the

referenced columns.

6.5.8 SHOW USERS

Lists all defined users.

Column Description
User_name User name
User_class Class of user

6.5.9 SHOW STATEMENTS

Shows all of the currently executing statements.

Column Description
Request_id The id of the request
Session_id The session id number
Submit_time The time at which the request was

submitted
Status P=processing, Q=queued
Statement The actual request submitted
Nodes For future use
Current_step For future use

6.5.10 KILL

Syntax:

KILL statement_number

Kill is used to abort a currently executing or queued request. Kill is followed by the
request id number, which can be determined from the SHOW STATEMENTS
command.

6.5.11ANALYZE

Syntax:

ANALYZE [table [(column [, ...])]]

The ANALYZE command is a synonym for UPDATE STATISTICS. Both commands are
supported to make administration easier for DBAs accustomed to one or the other
command from other DBMS systems.

ANALYZE updates internal statistics within node databases level as well as within
GridSQL’s metadata database, to allow better query plans to be created when
processing queries.

ANALYZE by itself will analyze all tables. If a table name is included, it will analyze
just the particular table. For finer granularity, individual column names may be
specified as well.

See also: VACUUM.

6.5.12 VACUUM

Syntax:

VACUUM [FULL | FREEZE] [ANALYZE] [table [(column [, ...])]]

The VACUUM command is used to clean up the database internally, freeing up space
due to deleted and updated rows. It is also a good idea to run it periodically due to
transaction id wrap-around (more information can be found in the Postgres Plus
Advanced Server or PostgreSQL documentation).

It is a good idea to run the variant VACUUM ANALYZE, achieving both the results of
VACUUM and ANALYZE at the same time.

VACUUM can optionally accept a single table name, as well as a subset of columns to
update.

The FULL parameter does a more thorough VACUUM, which may free up more space,
but it takes longer to run.

FREEZE is used to mark tuples so that they will not be subject to the transaction id
wrap-around issue. It is recommended to read more about FREEZE in the Postgres
Plus Advanced Server documentation before using.

See also: ANALYZE

6.5.13 EXECUTE DIRECT

Syntax:

EXEC[UTE] DIRECT ON [ALL | NODE[S] <node_list>]
'<native_command>'

The EXECUTE DIRECT command can be used to bypass GridSQL’s processing and
execute a SQL statement directly on the specified nodes. This can be useful for
maintenance and troubleshooting. Instead of using GridSQL’s syntax, the user uses
the native syntax of the underlying database.

Please exercise caution when using EXECUTE DIRECT. If you perform DDL
commands like CREATE TABLE, GridSQL’s metadata database will not be
updated and it will have no knowledge of the table.

If the command is a query, one ResultSet is returned from each of the nodes. The
results are displayed in the order in which the node numbers were listed. If ALL was
specified, the results are returned in their natural order.

If using the cmdline utility, the results from each node will be displayed one after
another.

Example:

EXECUTE DIRECT ON ALL ‘select count(*) from customer’;

