
2

Wavelets

The word ‘multiscale’ can mean many things. However, in this book we are
generally concerned with the representation of objects at a set of scales and
then manipulating these representations at several scales simultaneously.

One main aim of this book is to explain the role of wavelet methods in
statistics, and so the current chapter is necessarily a rather brief introduction
to wavelets. More mathematical (and authoritative) accounts can be found in
Daubechies (1992), Meyer (1993b), Chui (1997), Mallat (1998), Burrus et al.
(1997), and Walter and Shen (2001). A useful article that charts the history
of wavelets is Jawerth and Sweldens (1994). The book by Heil and Walnut
(2006) contains many important early papers concerning wavelet theory.

Statisticians also have reason to be proud. Yates (1937) introduced a
fast computational algorithm for the (hand) analysis of observations taken
in a factorial experiment. In modern times, this algorithm might be called a
‘generalized FFT’, but it is also equivalent to a Haar wavelet packet transform,
which we will learn about later in Section 2.11. So statisticians have been
‘doing’ wavelets, and wavelet packets, since at least 1937!

2.1 Multiscale Transforms

2.1.1 A multiscale analysis of a sequence

Before we attempt formal definitions of wavelets and the wavelet transform
we shall provide a gentle introduction to the main ideas of multiscale analysis.
The simple description we give next explains the main features of a wavelet
transform.

As many problems in statistics arise as a sequence of data observations,
we choose to consider the wavelet analysis of sequences rather than functions,
although we will examine the wavelet transform of functions later. Another
reason is that we want to use R to illustrate our discussion, and R naturally
handles discrete sequences (vectors).

16 2 Wavelets

We begin with discrete sequence (vector) of data: y = (y1, y2, . . . , yn),
where each yi is a real number and i is an integer ranging from one to n. For
our illustration, we assume that the length of our sequence n is a power of
two, n = 2J , for some integer J ≥ 0. Setting n = 2J should not be seen as an
absolute limitation as the description below can be modified for other n. We
call a sequence where n = 2J a dyadic one.

The following description explains how we extract multiscale ‘information’
from the vector y. The key information we extract is the ‘detail’ in the
sequence at different scales and different locations. Informally, by ‘detail’
we mean ‘degree of difference’ or (even more roughly) ‘variation’ of the
observations of the vector at the given scale and location.

The first step in obtaining the detail we require is

dk = y2k − y2k−1, (2.1)

for k = 1, . . . , n/2. So, for example, d1 = y2 − y1, d2 = y4 − y3, and so on.
Operation (2.1) extracts ‘detail’ in that if y2k is very similar to y2k−1, then
the coefficient dk will be very small. If y2k = y2k−1 then the dk will be exactly
zero. This seemingly trivial point becomes extremely important later on. If
y2k is very different from y2k−1, then the coefficient dk will be very large.

Hence, the sequence dk encodes the difference between successive pairs
of observations in the original y vector. However, {dk}n/2

k=1 is not the more
conventional first difference vector (diff in R). Specifically, differences such
as y3−y2 are missing from the {dk} sequence. The {dk} sequence encodes the
difference or detail at locations (approximately) (2k + 2k − 1)/2 = 2k − 1/2.

We mentioned above that we wished to obtain ‘detail’ at several different
scales and locations. Clearly the {dk} sequence gives us information at
several different locations. However, each dk only gives us information about
a particular y2k and its immediate neighbour. Since there are no closer
neighbours, the sequence {dk} gives us information at and around those points
y2k at the finest possible scale of detail. How can we obtain information at
coarser scales? The next step will begin to do this for us.

The next step is extremely similar to the previous one except the subtrac-
tion in (2.1) is replaced by a summation:

ck = y2k + y2k−1 (2.2)

for k = 1, . . . , n/2. This time the sequence {ck}n/2
k=1 is a set of scaled local

averages (scaled because we failed to divide by two, which a proper mean
would require), and the information in {ck} is a coarsening of that in the
original y vector. Indeed, the operation that turns {yi} into {ck} is similar
to a moving average smoothing operation, except, as with the differencing
above, we average non-overlapping consecutive pairs. Contrast this to regular
moving averages, which average over overlapping consecutive pairs.

An important point to notice is that each ck contains information origi-
nating from both y2k and y2k−1. In other words, it includes information from

2.1 Multiscale Transforms 17

two adjacent observations. If we now wished to obtain coarser detail than
contained in {dk}, then we could compare two adjacent ck.

Before we do this, we need to introduce some further notation. We first
introduced finest-scale detail dk. Now we are about to introduce coarser-scale
detail. Later, we will go on to introduce detail at successively coarser scales.
Hence, we need some way of keeping track of the scale of the detail. We do
this by introducing another subscript, j (which some authors represent by a
superscript). The original sequence y consisted of 2J observations. The finest-
level detail {dk} consists of n/2 = 2J−1 observations, so the extra subscript
we choose for the finest-level detail is j = J − 1 and we now refer to the dk

as dJ−1,k. Sometimes the comma is omitted when the identity and context of
the coefficients is clear, i.e., dj,k. Thus, the finest-level averages, or smooths,
ck are renamed to become cJ−1,k.

To obtain the next coarsest detail we repeat the operation of (2.1) to the
finest-level averages, cJ−1,k as follows:

dJ−2,� = cJ−1,2� − cJ−1,2�−1, (2.3)

this time for � = 1, . . . n/4. Again, dJ−2,� encodes the difference, or detail
present, between the coefficients cJ−1,2� and cJ−1,2�−1 in exactly the same
way as for the finer-detail coefficient in (2.1). From a quick glance of (2.3) it
does not immediately appear that dJ−2,� is at a different scale from dJ−1,k.
However, writing the cJ−1,· in terms of their constituent parts as defined by
(2.2), gives

dJ−2,� = (y4� + y4�−1) − (y4�−2 + y4�−3) (2.4)

for the same � as in (2.3). For example, if � = 1, we have dJ−2,1 =
(y4 +y3)−(y2 +y1). It should be clear now that dJ−2,� is a set of differences of
components that are averages of two original data points. Hence, they can be
thought of as ‘scale two’ differences, whereas the dJ−1,k could be thought of
as ‘scale one’ differences. This is our first encounter with multiscale: we have
differences that exist at two different scales.

Scale/level terminology. At this point, we feel the need to issue a warning
over terminology. In the literature the words ‘scale’, ‘level’, and occasionally
‘resolution’ are sometimes used interchangeably. In this book, we strive to use
‘level’ for the integral quantity j and ‘scale’ is taken to be the quantity 2j (or
2−j). However, depending on the context, we sometimes use scale to mean
level. With the notation in this book j larger (positive) corresponds to finer
scales, j smaller to coarser scales.

Now nothing can stop us! We can repeat the averaging Formula (2.2) on
the cJ−1,k themselves to obtain

cJ−2,� = cJ−1,2� + cJ−1,2�−1 (2.5)

for � = 1, . . . n/4. Writing (2.5) in terms of the original vector y for � = 1 gives
cJ−2,1 = (y2 + y1) + (y4 + y3) = y1 + y2 + y3 + y4: the local mean of the first
four observations without the 1

4—again cJ−2,� is a kind of moving average.

18 2 Wavelets

By repeating procedures (2.1) and (2.2) we can continue to produce both
detail and smoothed coefficients at progressively coarser scales. Note that
the actual scale increases by a factor of two each time and the number of
coefficients at each scale decreases by a factor of two. The latter point also
tells us when the algorithm stops: when only one c coefficient is produced. This
happens when there is only 20 = 1 coefficient, and hence this final coefficient
must have level index j = 0 (and be c0,1).

Figure 2.1 shows the (2.1) and (2.2) operations in block diagram form.
These kinds of diagrams are used extensively in the literature and are useful
for showing the main features of multiscale algorithms. Figure 2.1 shows the
generic step of our multiscale algorithm above. Essentially an input vector
cj = (cj,1, cj,2, . . . , cj,m) is transformed into two output vectors cj−1 and dj−1

by the above mathematical operations. Since Figure 2.1 depicts the ‘generic

+

−

cj

cj−1

dj−1

Fig. 2.1. Generic step in ‘multiscale transform’. The input vector, cj , is transformed
into two output vectors, cj−1 and dj−1, by the addition and subtraction operations
defined in Equations (2.1) and (2.2) for j = J, . . . , 1.

step’, the figure also implicitly indicates that the output cj−1 will get fed
into an identical copy of the block diagram to produce vectors cj−2 and dj−2

and so on. Figure 2.1 does not show that the initial input to the ‘multiscale
algorithm’ is the input vector y, although it could be that cJ = y. Also, the
figure does not clearly indicate that the length of cj−1 (and dj−1) is half the
length of cj , and so, in total, the number of output elements of the step is
identical to the number of input elements.

Example 2.1. Suppose that we begin with the following sequence of numbers:
y = (y1, . . . , yn) = (1, 1, 7, 9, 2, 8, 8, 6). Since there are eight elements of y, we
have n = 8 and hence J = 3 since 23 = 8. First apply Formula (2.1) and simply
subtract the first number from the second as follows: d2,1 = y2−y1 = 1−1 = 0.
For the remaining d coefficients at level j = 2 we obtain d2,2=y4 − y3=9− 7=

2.1 Multiscale Transforms 19

2, d2,3 = y6 − y5 = 8 − 2 = 6 and finally d2,4 = y8 − y7 = 6 − 8 = −2. As
promised there are 2J−1 = n/2 = 4 coefficients at level 2.

For the ‘local average’, we perform the same operations as before but
replace the subtraction by addition. Thus, c2,1 = y2 + y1 = 1 + 1 = 2 and for
the others c2,2 = 9 + 7 = 16, c2,3 = 8 + 2 = 10, and c2,4 = 6 + 8 = 14.

Notice how we started off with eight yi and we have produced four d2,·
coefficients and four c2,· coefficients. Hence, we produced as many output
coefficients as input data. It is useful to write down these computations in
a graphical form such as that depicted by Figure 2.2. The organization of

i1 7 9 2 8 8 6

0 2 6 −2

2 16 10 14

4

18 24

6

42

1

14

y

d

c

d

c

d

c0

0

1

1

2

2

Fig. 2.2. Graphical depiction of a multiscale transform. The dotted arrows depict
a subtraction and numbers in italics the corresponding detail coefficient dj,k. The
solid arrows indicate addition, and numbers set in the upright font correspond to
the cj,k.

coefficients in Figure 2.2 can be visualized as an inverted pyramid (many
numbers at the top, one number at the bottom, and steadily decreasing from
top to bottom). The algorithm that we described above is an example of a
pyramid algorithm.

The derived coefficients in Figure 2.2 all provide information about the
original sequence in a scale/location fashion. For example, the final 42

20 2 Wavelets

indicates that the sum of the whole original sequence is 42. The 18 indicates
that the sum of the first four elements of the sequence is 18. The 4 indicates
that the sum of the last quarter of the data minus the sum of the third quarter
is four. In this last example we are essentially saying that the consecutive
difference in the ‘scale two’ information in the third and last quarters is four.

So far we have avoided using the word wavelet in our description of the
multiscale algorithm above. However, the dj,k ‘detail’ coefficients are wavelet
coefficients and the cj,k coefficients are known as father wavelet or scaling
function coefficients. The algorithm that we have derived is one kind of
(discrete) wavelet transform (DWT), and the general pyramid algorithm for
wavelets is due to Mallat (1989b). The wavelets underlying the transform
above are called Haar wavelets after Haar (1910). Welcome to Wavelets!

Inverse. The original sequence can be exactly reconstructed by using only
the wavelet coefficients dj,k and the last c00. For example, the inverse formulae
to the simple ones in (2.3) and (2.5) are

cj−1,2k = (cj−2,k + dj−2,k)/2 (2.6)

and
cj−1,2k−1 = (cj−2,k − dj−2,k)/2. (2.7)

Section 2.7.4 gives a full description of the inverse discrete wavelet transform.
Sparsity. A key property of wavelet coefficient sequences is that they

are often sparse. For example, suppose we started with the input sequence
(1, 1, 1, 1, 2, 2, 2, 2). If we processed this sequence with the algorithm depicted
by Figure 2.2, then all of the wavelet coefficients at scales one and two would
be exactly zero. The only non-zero coefficient would be d0 = −4. Hence, the
wavelet coefficients are an extremely sparse set. This behaviour is charac-
teristic of wavelets: piecewise smooth functions have sparse representations.
The vector we chose was actually piecewise constant, an extreme example of
piecewise smooth. The sparsity is a consequence of the unconditional basis
property of wavelets briefly discussed in the previous chapter and also of the
vanishing moments property of wavelets to be discussed in Section 2.4.

Energy. In the example above the input sequence was (1, 1, 7, 9, 2, 8, 8, 6).
This input sequence can be thought to possess an ‘energy’ or norm as defined
by ||y||2 =

∑8
i=1 y2

i . (See Section B.1.3 for a definition of norm.) Here, the
norm of the input sequence is 1+1+49+4+64+64+36 = 219. The transform
wavelet coefficients are (from finest to coarsest) (0, 2, 6,−2, 14, 4, 6, 42). What
is the norm of the wavelet coefficients? It is 0+4+36+4+196+16+36+1764 =
2056. Hence the norm, or energy, of the output sequence is much larger than
that of the input. We would like a transform where the ‘output energy’ is the
same as the input. We address this in the next section.

2.1.2 Discrete Haar wavelets

To address the ‘energy’ problem at the end of the last example, let us think
about how we might change Formulae (2.1) and (2.2) so as to conserve energy.

2.1 Multiscale Transforms 21

Suppose we introduce a multiplier α as follows. Thus (2.1) becomes

dk = α(y2k − y2k−1), (2.8)

and similarly (2.2) becomes

ck = α(y2k + y2k−1). (2.9)

Thus, with this mini transform the input (y2k, y2k−1) is transformed into the
output (dk, ck) and the (squared) norm of the output is

d2
k + c2

k = α2(y2
2k − 2y2ky2k−1 + y2

2k−1) + α2(y2
2k + 2y2ky2k−1 + y2

2k−1)
= 2α2(y2

2k + y2
2k−1), (2.10)

where y2
2k + y2

2k−1 is the (squared) norm of the input coefficients. Hence, if
we wish the norm of the output to equal the norm of the input, then we
should arrange for 2α2 = 1 and hence we should set α = 2−1/2. With this
normalization the formula for the discrete wavelet coefficients is

dk = (y2k − y2k−1)/
√

2, (2.11)

and similarly for the father wavelet coefficient ck. Mostly we keep this nor-
malization throughout, although it is sometimes convenient to use other nor-
malizations. For example, see the normalization for the Haar–Fisz transform
in Section 6.4.6.

We can rewrite (2.11) in the following way:

dk = g0y2k + g1y2k−1, (2.12)

where g0 = 2−1/2 and g1 = −2−1/2, or in the more general form:

dk =
∞∑

�=−∞
g�y2k−�, (2.13)

where

g� =

⎧
⎨

⎩

2−1/2 for � = 0,
−2−1/2 for � = 1,

0 otherwise.
(2.14)

Equation (2.13) is similar to a filtering operation with filter coefficients of
{g�}∞�=−∞.

Example 2.2. If we repeat Example 2.1 with the new normalization, then
d2,1 = (y2 − y1)/

√
2 = (1 − 1)/

√
2 = 0, and then for the remaining d

coefficients at scale j = 2 we obtain d2,2 = (y4 − y3)/
√

2 = (9 − 7)/
√

2 =
√

2,
d2,3 = (y6 − y5)/

√
2 = (8− 2)/

√
2 = 3

√
2, and, finally, d2,4 = (y8 − y7)/

√
2 =

(6 − 8)/
√

2 = −
√

2.

22 2 Wavelets

Also, c2,1 = (y2 + y1)/
√

2 = (1 + 1)/
√

2 =
√

2 and for the others c2,2 =
(9 + 7)/

√
2 = 8

√
2, c2,3 = (8 + 2)/

√
2 = 5

√
2, and c2,4 = (6 + 8)/

√
2 = 7

√
2.

The c2,k permit us to find the d1,� and c1,� as follows: d1,1 = (c2,2 −
c2,1)/

√
2 = (8

√
2−

√
2)/

√
2 = 7, d1,2 = (c2,4−c2,3)/

√
2 = (7

√
2−5

√
2)/

√
2 =

2, and similarly c1,1 = 9, c1,2 = 12.
Finally, d0,1 = (c1,2 − c1,1)/

√
2 = (12 − 9)/

√
2 = 3

√
2/2 and c0,1 =

(12 + 9)/
√

2 = 21
√

2/2.

Example 2.3. Let us perform the transform described in Example 2.2 in
WaveThresh. First, start R and load the WaveThresh library by the command

> library("WaveThresh")

and now create the vector that contains our input to the transform:

> y <- c(1,1,7,9,2,8,8,6)

The function to perform the discrete wavelet transform in WaveThresh is called
wd. So let us perform that transform and store the answers in an object called
ywd:

> ywd <- wd(y, filter.number=1, family="DaubExPhase")

The wd call here supplies two extra arguments: the filter.number and
family arguments that specify the type of wavelet that is used for the
transform. Here, the values filter.number=1 and family="DaubExPhase"
specify Haar wavelets (we will see why these argument names are used later).

The ywd object returned by the wd call is a composite object (or list
object). That is, ywd contains many different components all giving some useful
information about the wavelet transform that was performed. The names of
the components can be displayed by using the names command as follows:

> names(ywd)
[1] "C" "D" "nlevels" "fl.dbase" "filter"
[6] "type" "bc" "date"

For example, if one wishes to know what filter produced a particular wavelet
decomposition object, then one can type

> ywd$filter

and see the output

$H
[1] 0.7071068 0.7071068

$G
NULL

$name

2.1 Multiscale Transforms 23

[1] "Haar wavelet"

$family
[1] "DaubExPhase"

$filter.number
[1] 1

which contains information about the wavelet used for the transform. Another
interesting component of the ywd$filter object is the H component, which
is equal to the vector (2−1/2, 2−1/2). This vector is the one involved in the
filtering operation, analogous to that in (2.13), that produces the ck, in other
words:

ck =
∞∑

�=−∞
h�y2k−�, (2.15)

where

h� =

⎧
⎨

⎩

2−1/2 for � = 0,
2−1/2 for � = 1,

0 otherwise.
(2.16)

Possibly the most important information contained within the wavelet
decomposition object ywd are the wavelet coefficients. They are stored in the
D component of the object, and they can be accessed directly if desired (see
the Help page of wd to discover how, and in what order, the coefficients are
stored). However, the coefficients are stored in a manner that is efficient for
computers, but less convenient for human interpretation. Hence, WaveThresh
provides a function, called accessD, to extract the coefficients from the ywd
object in a readable form.

Suppose we wished to extract the finest-level coefficients. From Example 2.2
these coefficients are (d2,1, d2,2, d2,3, d2,4) = (0,

√
2, 3

√
2,−

√
2). We can obtain

the same answer by accessing level two coefficients from the ywd object as
follows:

> accessD(ywd, level=2)
[1] 0.000000 -1.414214 -4.242641 1.414214

The answer looks correct except the numbers are the negative of what they
should be. Why is this? The answer is that WaveThresh uses the filter
g0 = −2−1/2 and g1 = 2−1/2 instead of the one shown in (2.13). However,
this raises a good point: for this kind of analysis one can use filter coefficients
themselves or their negation, and/or one can use the reversed set of filter
coefficients. In all these circumstances, one still obtains the same kind of
analysis.

Other resolution levels in the wavelet decomposition object can be ob-
tained using the accessD function with the levels arguments set to one and

24 2 Wavelets

zero. The cj,k father wavelet coefficients can be extracted using the accessC
command, which has an analogous mode of operation.

It is often useful to obtain a picture of the wavelet coefficients. This can
be achieved in WaveThresh by merely plotting the coefficients as follows:

> plot(ywd)

which produces a plot like the one in Figure 2.3.

Wavelet Decomposition Coefficients

Standard transform Haar wavelet
Translate

R
es

ol
ut

io
n

Le
ve

l

2
1

0

0 1 2 3 4

Fig. 2.3. Wavelet coefficient plot of ywd. The coefficients dj,k are plotted with the
finest-scale coefficients at the bottom of the plot, and the coarsest at the top. The
level is indicated by the left-hand axis. The value of the coefficient is displayed by
a vertical mark located along an imaginary horizontal line centred at each level.
Thus, the three marks located at resolution level 2 correspond to the three non-
zero coefficients d2,2, d2,3, and d2,4. Note that the zero d2,1 is not plotted. The k,
or location parameter, of each dj,k wavelet coefficient is labelled ‘Translate’, and
the horizontal positions of the coefficients indicate the approximate position in the
original sequence from which the coefficient is derived. Produced by f.wav1().

Other interesting information about the ywd object can be obtained by
simply typing the name of the object. For example:

> ywd
Class ’wd’ : Discrete Wavelet Transform Object:

~~ : List with 8 components with names

2.1 Multiscale Transforms 25

C D nlevels fl.dbase filter type bc date

$C and $D are LONG coefficient vectors

Created on : Mon Dec 4 22:27:11 2006
Type of decomposition: wavelet

summary(.):

Levels: 3
Length of original: 8
Filter was: Haar wavelet
Boundary handling: periodic
Transform type: wavelet
Date: Mon Dec 4 22:27:11 2006

This output provides a wealth of information the details of which are explained
in the WaveThresh Help page for wd.

2.1.3 Matrix representation

The example in the previous sections, and depicted in Figure 2.2, takes a
vector input, y = (1, 1, 7, 9, 2, 8, 8, 6), and produces a set of output coefficients
that can be represented as a vector:

d = (21
√

2/2, 0,−
√

2,−3
√

2,
√

2,−7,−2, 3
√

2/2),

as calculated at the end of Example 2.2. Since the output has been computed
from the input using a series of simple additions, subtractions, and constant
scalings, it is no surprise that one can compute the output from the input
using a matrix multiplication. Indeed, if one defines the matrix

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

1/
√

2 −1/
√

2 0 0 0 0 0 0
0 0 1/

√
2 −1/

√
2 0 0 0 0

0 0 0 0 1/
√

2 −1/
√

2 0 0
0 0 0 0 0 0 1/

√
2 −1/

√
2

1/2 1/2 −1/2 −1/2 0 0 0 0
0 0 0 0 1/2 1/2 −1/2 −1/2√
2/4

√
2/4

√
2/4

√
2/4 −

√
2/4 −

√
2/4 −

√
2/4 −

√
2/4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.17)

it is easy to check that d = Wx. It is instructive to see the structure of the pre-
vious equations contained within the matrix. Another point of interest is in the
three ‘wavelet vectors’ at different scales that are ‘stored’ within the matrix,
for example, (1/

√
2,−1/

√
2) in rows two through five, (1/2, 1/2,−1/2,−1/2)

in rows six and seven, and (1, 1, 1, 1,−1,−1,−1,−1)/2
√

2 in the last row.

26 2 Wavelets

The reader can check that W is an orthogonal matrix in that

WT W = WWT = I. (2.18)

One can ‘see’ this by taking any row and multiplying component-wise by any
other row and summing the result (the inner product of any two rows) and
obtaining zero for different rows or one for the same row. (See Section B.1.3
for a definition of inner product.)

Since W is an orthogonal matrix it follows that

||d||2 = dT d = (Wy)T Wy = yT (WT W)y = yT y = ||y||2, (2.19)

in other words, the length of the output vector d is the same as that of the
input vector y and (2.19) is Parseval’s relation.

Not all wavelets are orthogonal and there are uses for non-orthogonal
wavelets. For example, with non-orthogonal wavelets it is possible to adjust
the relative resolution in time and scale (e.g. more time resolution whilst
sacrificing frequency resolution), see Shensa (1996) for example. Most of the
wavelets we will consider in this book are orthogonal, although sometimes we
shall use collections which do not form orthogonal systems, for example, the
non-decimated wavelet transform described in Section 2.9.

The operation d = Wy carries out the wavelet transform using a matrix
multiplication operation rather than the pyramidal technique we described
earlier in Sections 2.1.1 and 2.1.2. If y was a vector containing a dyadic
number, n = 2J , of entries and hence W was of dimension n × n, then the
computational effort in performing the Wy operation is O(n2) (the effort for
multiplying the first row of W by y is n multiplications and n − 1 additions,
roughly n ‘operations’. Repeating this for each of the n rows of W results in
n2 operations in total). See Section B.1.9 for a definition of O.

The pyramidal algorithm of earlier sections produces the same wavelet
coefficients as the matrix multiplication, but some consideration shows that
it produces them in O(n) operations. Each coefficient is produced with one
operation and coefficients are cascaded into each other in an efficient way
so that the n coefficients that are produced take only O(n) operations. This
result is quite remarkable and places the pyramid algorithm firmly into the
class of ‘fast algorithms’ and capable of ‘real-time’ operation. As we will see
later, the pyramid algorithm applies to a wide variety of wavelets, and hence
one of the advertised benefits of wavelets is that they possess fast wavelet
transforms.

The pyramidal wavelet transform is an example of a fast algorithm with
calculations carefully organized to obtain efficient operation. It is also the case
that only O(n) memory locations are required for the pyramidal execution as
the two inputs can be completely replaced by a father and mother wavelet
coefficient at each step, and then the father used in subsequent processing, as
in Figure 2.2, for example. Another well-known example of a ‘fast algorithm’
is the fast Fourier transform (or FFT), which computes the discrete Fourier

2.1 Multiscale Transforms 27

transform in O(n log n) operations. Wavelets have been promoted as being
‘faster than the FFT’, but one must realize that the discrete wavelet and
Fourier transforms compute quite different transforms. Here, log n is small for
even quite large n.

WaveThresh contains functionality to produce the matrix representations
of various wavelet transforms. Although the key wavelet transformation
functions in WaveThresh, like wd, use pyramidal algorithms for efficiency, it is
sometimes useful to be able to obtain a wavelet transform matrix. To produce
the matrix W shown in (2.17) use the command GenW as follows:

> W1 <-t(GenW(filter.number=1, family="DaubExPhase"))

Then examining W1 gives

> W1
[,1] [,2] [,3] [,4] [,5]

[1,] 0.3535534 0.3535534 0.3535534 0.3535534 0.3535534
[2,] 0.7071068 -0.7071068 0.0000000 0.0000000 0.0000000
[3,] 0.0000000 0.0000000 0.7071068 -0.7071068 0.0000000
[4,] 0.0000000 0.0000000 0.0000000 0.0000000 0.7071068
[5,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[6,] 0.5000000 0.5000000 -0.5000000 -0.5000000 0.0000000
[7,] 0.0000000 0.0000000 0.0000000 0.0000000 0.5000000
[8,] 0.3535534 0.3535534 0.3535534 0.3535534 -0.3535534

[,6] [,7] [,8]
[1,] 0.3535534 0.3535534 0.3535534
[2,] 0.0000000 0.0000000 0.0000000
[3,] 0.0000000 0.0000000 0.0000000
[4,] -0.7071068 0.0000000 0.0000000
[5,] 0.0000000 0.7071068 -0.7071068
[6,] 0.0000000 0.0000000 0.0000000
[7,] 0.5000000 -0.5000000 -0.5000000
[8,] -0.3535534 -0.3535534 -0.3535534

which is the same as W given in (2.17) except in a rounded floating-point
representation. Matrices for different n can be computed by changing the n
argument to GenW and different wavelets can also be specified. See later for
details on wavelet specification in WaveThresh.

One can verify the orthogonality of W using WaveThresh. For example:

> W1 %*% t(W1)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1 0 0 0 0 0 0 0
[2,] 0 1 0 0 0 0 0 0
[3,] 0 0 1 0 0 0 0 0
[4,] 0 0 0 1 0 0 0 0
[5,] 0 0 0 0 1 0 0 0
[6,] 0 0 0 0 0 1 0 0

28 2 Wavelets

[7,] 0 0 0 0 0 0 1 0
[8,] 0 0 0 0 0 0 0 1

2.2 Haar Wavelets (on Functions)

2.2.1 Scaling and translation notation

First, we introduce a useful notation. Given any function p(x), on x ∈ R say,
we can form the (dyadically) scaled and translated version pj,k(x) defined by

pj,k(x) = 2j/2p(2jx − k) (2.20)

for all x ∈ R and where j, k are integers. Note that if the function p(x) is
‘concentrated’ around zero, then pj,k(x) is concentrated around 2−jk. The
2j/2 factor ensures that pj,k(x) has the same norm as p(x). In other words

||pj,k(x)||2 =
∫ ∞

−∞
p2

j,k(x) dx

=
∫ ∞

−∞
2jp2(2jx − k) dx (2.21)

=
∫ ∞

−∞
p2(y) dy = ||p||2,

where the substitution y = 2jx − k is made at (2.21).

2.2.2 Fine-scale approximations

More mathematical works introduce wavelets that operate on functions rather
than discrete sequences. So, let us suppose that we have a function f(x)
defined on the interval x ∈ [0, 1]. It is perfectly possible to extend the following
ideas to other intervals, the whole line R, or d-dimensional Euclidean space.

Obviously, with a discrete sequence, the finest resolution that one can
achieve is that of the sequence itself and, for Haar wavelets, the finest-scale
wavelet coefficients involve pairs of these sequence values. For Haar, involving
any more than pairs automatically means a larger-scale Haar wavelet. Also,
recall that the Haar DWT progresses from finer to coarser scales.

With complete knowledge of a function, f(x), one can, in principle,
investigate it at any scale that one desires. So, typically, to initiate the
Haar wavelet transform we need to choose a fixed finest scale from which to
start. This fixed-scale consideration actually produces a discrete sequence, and
further processing of only the sequence can produce all subsequent information
at coarser scales (although it could, of course, be obtained from the function).
We have not answered the question about how to obtain such a discrete
sequence from a function. This is an important consideration and there are

2.2 Haar Wavelets (on Functions) 29

many ways to do it; see Section 2.7.3 for two suggestions. However, until then
suppose that such a sequence, derived from f(x), is available.

In the discrete case the finest-scale wavelet coefficients involved subtracting
one element from its neighbour in consecutive pairs of sequence values. For the
Haar wavelet transform on functions we derive a similar notion which involves
subtracting integrals of the function over consecutive pairs of intervals.

Another way of looking at this is to start with a fine-scale local averaging
of the function. First define the Haar father wavelet at scale 2J by φ(2Jx),
where

φ(x) =
{

1, x ∈ [0, 1],
0 otherwise. (2.22)

Then define the finest-level (scale 2J) father wavelet coefficients to be

cJ,k =
∫ 1

0

f(x)2J/2φ(2Jx − k) dx, (2.23)

or, using our scaling/translation notation, (2.23) becomes

cJ,k =
∫ 1

0

f(x)φJ,k(x) dx = 〈f, φJ,k〉 , (2.24)

the latter representation using an inner product notation.
At this point, it is worth explaining what the cJ,k represent. To do this we

should explore what the φJ,k(x) functions look like. Using (2.20) and (2.22)
it can be seen that

φJ,k(x) =
{

2J/2 x ∈ [2−Jk, 2−J (k + 1)],
0 otherwise.

(2.25)

That is, the function φJ,k(x) is constant over the interval IJ,k = [2−Jk, 2−J (k+
1)] and zero elsewhere. If the function f(x) is defined on [0, 1], then the range
of k where IJ,k overlaps [0, 1] is from 0 to 2J − 1. Thus, the coefficient cJ,k

is just the integral of f(x) on the interval IJ,k (and proportional to the local
average of f(x) over the interval IJ,k).

In fact, the set of coefficients {cJ,k}2J−1
k=0 and the associated Haar father

wavelets at that scale define an approximation fJ(x) to f(x) defined by

fJ(x) =
2J−1∑

k=0

cJ,kφJ,k(x). (2.26)

Figure 2.4 illustrates (2.26) for three different values of J . Plot a in Figure 2.4
shows a section of some real inductance plethysmography data collected by
the Department of Anaesthesia at the Bristol Royal Infirmary which was first
presented and described in Nason (1996). Essentially, this time series reflects
changes in voltage, as a patient breathes, taken from a measuring device

30 2 Wavelets

a.

1240 1280

-0
.2

0.
6

b.

1240 1280

-0
.2

0.
6

c.

1240 1280

-0
.2

0.
6

d.

1240 1280

-0
.2

0.
6

Fig. 2.4. Section of inductance plethysmography data from WaveThresh (a), (b)
projected onto Haar father wavelet spaces J = 2, (c) J = 4, and (d) J = 6. In each
plot the horizontal label is time in seconds, and the vertical axis is milliVolts.

encapsulated in a belt worn by the patient. Plots b, c, and d in Figure 2.4
show Haar father wavelet approximations at levels J = 2, 4 and 6. The original
data sequence is of length 4096, which corresponds to level J = 12. These
Haar approximations are reminiscent of the staircase approximation useful (for
example) in measure theory for proving, among other things, the monotone
convergence theorem, see Williams (1991) or Kingman and Taylor (1966).

2.2.3 Computing coarser-scale c from-finer scale ones

Up to now, there is nothing special about J . We could compute the local
average over these dyadic intervals Ij,k for any j and k. An interesting situation
occurs if one considers how to compute the integral of f(x) over IJ−1,k—that
is the interval that is twice the width of IJ,k and contains the intervals IJ,2k

and IJ,2k+1. It turns out that we can rewrite cJ−1,k in terms of cJ,2k and
cJ,2k+1 as follows:

2.2 Haar Wavelets (on Functions) 31

cJ−1,k =
∫ 2−(J−1)(k+1)

2−(J−1)k

f(x)φJ−1,k(x) dx

= 2−1/2

∫ 2−J (2k+2)

2−J2k

f(x)2J/2φ(2J−1x − k) dx (2.27)

= 2−1/2

{∫ 2−J (2k+1)

2−J2k

f(x)2J/2φ(2Jx − 2k) dx

+
∫ 2−J (2k+2)

2−J (2k+1)

f(x)2J/2φ(2Jx − (2k + 1)) dx

}

(2.28)

= 2−1/2

{∫ 2−J (2k+1)

2−J2k

f(x)φJ,2k(x) dx

+
∫ 2−J (2k+2)

2−J (2k+1)

f(x)φJ,2k+1(x) dx

}

= 2−1/2(cJ,2k + cJ,2k+1). (2.29)

The key step in the above argument is the transition from the scale J − 1 in
(2.27) to scale J in (2.28). This step can happen because, for Haar wavelets,

φ(y) = φ(2y) + φ(2y − 1). (2.30)

This equation is depicted graphically by Figure 2.5 and shows how φ(y) is
exactly composed of two side-by-side rescalings of the original. Equation (2.30)
is a special case of a more general relationship between father wavelets taken
at adjacent dyadic scales. The formula for general wavelets is (2.47). It is an
important equation and is known as the dilation equation, two-scale relation,
or the scaling equation for father wavelets and it is an example of a refinement
equation. Using this two-scale relation it is easy to see how (2.27) turns
into (2.28) by setting y = 2J−1x − k and then we have

φ(2J−1x − k) = φ(2Jx − 2k) + φ(2Jx − 2k − 1). (2.31)

A key point here is that to compute cJ−1,k one does not necessarily need
access to the function and apply the integration given in (2.24). One needs
only the values cJ,2k and cJ,2k+1 and to apply the simple Formula (2.29).

Moreover, if one wishes to compute values of cJ−2,� right down to c0,m

(for some �, m), i.e., c at coarser scales still, then one needs only values of
c from the next finest scale and the integration in (2.24) is not required. Of
course, the computation in (2.29) is precisely the one in the discrete wavelet
transform that we discussed in Section 2.1.2, and hence computation of all
the coarser-scale father wavelet coefficients from a given scale 2J is a fast and
efficient algorithm.

32 2 Wavelets

10

1

y

φ(y)

Fig. 2.5. Solid grey line is plot of φ(y) versus y. Two black dashed lines are φ(2y)
and φ(2y − 1) to the left and right respectively.

2.2.4 The difference between scale approximations — wavelets

Suppose we have two Haar approximations of the same function but at two
different scale levels. For definiteness suppose we have f0(x) and f1(x), the
two coarsest approximations (actually approximation is probably not a good
term here if the function f is at all wiggly since coarse representations will not
resemble the original). The former, f0(x), is just a constant function c00φ(x), a
multiple of the father wavelet. The approximation f1(x) is of the form (2.26),
which simplifies here to

f1(x) = c1,0φ1,0(x) + c1,1φ1,1(x) = c1,021/2φ(2x) + c1,121/2φ(2x − 1). (2.32)

What is the difference between f0(x) and f1(x)? The difference is the ‘detail’
lost in going from a finer representation, f1, to a coarser one, f0. Mathemati-
cally:

f1(x) − f0(x) = c0,0φ(x) − 21/2 {c10φ(2x) + c1,1φ(2x − 1)}
= c0,0 {φ(2x) + φ(2x − 1)}
− 21/2 {c1,0φ(2x) + c1,1φ(2x − 1)} , (2.33)

using (2.30). Hence

f1(x) − f0(x) = (c0,0 − 21/2c1,0)φ(2x) + (c0,0 − 21/2c1,1)φ(2x − 1), (2.34)

and since (2.29) implies c0,0 = (c1,0 + c1,1)/
√

2, we have

2.2 Haar Wavelets (on Functions) 33

f1(x) − f0(x) = {(c1,1 − c1,0)φ(2x) + (c1,0 − c1,1)φ(2x − 1)} /
√

2. (2.35)

Now suppose we define

d0,0 = (c1,1 − c1,0)/
√

2, (2.36)

so that the difference becomes

f1(x) − f0(x) = d0,0 {φ(2x) − φ(2x − 1)} . (2.37)

At this point, it is useful to define the Haar mother wavelet defined by

ψ(x) = φ(2x) − φ(2x − 1)

=

⎧
⎨

⎩

1 if x ∈ [0, 1
2),

−1 if x ∈ [12 , 1),
0 otherwise.

(2.38)

Then the difference between two approximations at scales one and zero is
given by substituting ψ(x) into (2.37), to obtain

f1(x) − f0(x) = d0,0ψ(x). (2.39)

Another way of looking at this is to rearrange (2.39) to obtain

f1(x) = c0,0φ(x) + d0,0ψ(x). (2.40)

In other words, the finer approximation at level 1 can be obtained from the
coarser approximation at level 0 plus the detail encapsulated in d0,0. This
can be generalized and works at all levels (simply imagine making everything
described above operate at a finer scale and stacking those smaller mother
and father wavelets next to each other) and one can obtain

fj+1(x) = fj(x) +
2j−1∑

k=0

dj,kψj,k(x)

=
2j−1∑

k=0

cj,kφj,k(x) +
2j−1∑

k=0

dj,kψj,k(x). (2.41)

A Haar father wavelet approximation at finer scale j+1 can be obtained using
the equivalent approximation at scale j plus the details stored in {dj,k}2j−1

k=0 .

2.2.5 Link between Haar wavelet transform and discrete version

Recall Formulae (2.29) and (2.36)

c0,0 = (c1,1 + c1,0)/
√

2,

d0,0 = (c1,1 − c1,0)/
√

2. (2.42)

34 2 Wavelets

These show that, given the finer sequence (c1,0, c1,1), it is possible to obtain the
coarser-scale mother and father wavelet coefficients without reference to either
the actual mother and father wavelet functions themselves (i.e., ψ(x), φ(x))
or the original function f(x). This again generalizes to all scales. Once the
finest-scale coefficients {cJ,k}2J−1

k=0 are acquired, all the coarser-scale father
and mother wavelet coefficients can be obtained using the discrete wavelet
transform described in Section 2.1.2. Precise formulae for obtaining coarser
scales from finer, for all scales, are given by (2.91).

2.2.6 The discrete wavelet transform coefficient structure

Given a sequence y1, . . . , yn, where n = 2J , the discrete wavelet transform
produces a vector of coefficients as described above consisting of the last,
most coarse, father wavelet coefficient c0,0 and the wavelet coefficients dj,k for
j = 0, . . . , J − 1 and k = 0, . . . , 2j − 1.

2.2.7 Some discrete Haar wavelet transform examples

We now show two examples of computing and plotting Haar wavelet coeffi-
cients. The two functions we choose are the Blocks and Doppler test func-
tions introduced by Donoho and Johnstone (1994b) and further discussed
in Section 3.4. These functions can be produced using the DJ.EX function
in WaveThresh. The plots of the Blocks and Doppler functions, and the
wavelet coefficients are shown in Figures 2.6 and 2.7. The code that pro-
duced Figure 2.7 in WaveThresh was as follows:

> yy <- DJ.EX()$doppler

> yywd <- wd(yy, filter.number=1, family="DaubExPhase")

> x <- 1:1024

> oldpar <- par(mfrow=c(2,2))

> plot(x, yy, type="l", xlab="x", ylab="Doppler")
> plot(x, yy, type="l", xlab="x", ylab="Doppler")

> plot(yywd, main="")
> plot(yywd,scaling="by.level", main="")

> par(oldpar)

The code for Figure 2.6 is similar but Blocks replaces Doppler.
The coefficients plotted in the bottom rows of Figures 2.6 and 2.7 are the

same in each picture. The difference is that the coefficients in the bottom

2.2 Haar Wavelets (on Functions) 35

0 200 400 600 800 1000

−
5

0
5

10
15

20

x

B
lo

ck
s

0 200 400 600 800 1000

−
5

0
5

10
15

20

x

B
lo

ck
s

Standard transform Haar wavelet
Translate

R
es

ol
ut

io
n

Le
ve

l

9
7

5
3

1

0 128 256 384 512

Standard transform Haar wavelet
Translate

R
es

ol
ut

io
n

Le
ve

l

9
7

5
3

1

0 128 256 384 512

Fig. 2.6. Top row : left and right : identical copies of the Blocks function. Bottom
left : Haar discrete wavelet coefficients, dj,k, of Blocks function (see discussion around
Figure 2.3 for description of coefficient layout). All coefficients plotted to same
scale and hence different coefficients are comparable. Bottom right : as left but with
coefficients at each level plotted according to a scale that varies according to level.
Thus, coefficient size at different levels cannot be compared. The ones at coarse
levels are actually bigger. Produced by f.wav13().

left subplot of each are all plotted to the same scale, whereas the ones in the
right are plotted with a different scale for each level (by scale here we mean
the relative height of the small vertical lines that represent the coefficient
values, not the resolution level, j, of the coefficients.) In both pictures it
can be seen that as the level increases, to finer scales, the coefficients get
progressively smaller (in absolute size). The decay rate of wavelet coefficients is
mathematically related to the smoothness of the function under consideration,
see Daubechies (1992, Section 2.9), Mallat and Hwang (1992), and Antoniadis
and Gijbels (2002).

Three other features can be picked up from these wavelet coefficient plots.
In Figure 2.6 the discontinuities in the Blocks function appear clearly as the
large coefficients. Where there is a discontinuity a large coefficient appears at
a nearby time location, with the exception of the coarser scales where there is
not necessarily any coefficient located near to the discontinuities. The other
point to note about Figure 2.6 is that many coefficients are exactly zero. This
is because, in Haar terms, two neighbours, identical in value, were subtracted
as in (2.42) to give an exact zero; and this happens at coarser scales too. One

36 2 Wavelets

0 200 400 600 800 1000

−
10

−
5

0
5

10

x

D
op

pl
er

0 200 400 600 800 1000

−
10

−
5

0
5

10

x

D
op

pl
er

Standard transform Haar wavelet
Translate

R
es

ol
ut

io
n

Le
ve

l

9
7

5
3

1

0 128 256 384 512

Standard transform Haar wavelet
Translate

R
es

ol
ut

io
n

Le
ve

l

9
7

5
3

1

0 128 256 384 512

Fig. 2.7. As Figure 2.6 but applied to the Doppler function. Produced by f.wav14().

can examine the coefficients more directly. For example, looking at the first
15 coefficients at level eight gives

> accessD(wd(DJ.EX()$blocks), level=8)[1:15]
[1] 9.471238e-17 -3.005645e-16 1.729031e-15 -1.773625e-16
[5] 1.149976e-16 -3.110585e-17 4.289763e-18 -1.270489e-19
[9] -1.362097e-20 0.000000e+00 0.000000e+00 0.000000e+00
[13] 0.000000e+00 0.000000e+00 0.000000e+00

Many of these are exactly zero. The ones that are extremely small (e.g. the
first 9.47×10−17) are only non-zero because the floating-point rounding error
can be considered to be exactly zero for practical purposes. Figure 2.6 is a
direct illustration of the sparsity of a wavelet representation of a function
as few of the wavelet coefficients are non-zero. This turns out to happen for
a wide range of signals decomposed with the right kind of wavelets. Such
a property is of great use for compression purposes, see e.g. Taubman and
Marcellin (2001), and for statistical nonparametric regression, which we will
elaborate on in Chapter 3.

Finally, in Figure 2.7, in the bottom right subplot, the oscillatory nature
of the Doppler signal clearly shows up in the coefficients, especially at the
finer scales. In particular, it can be seen that there is a relationship between
the local frequency of oscillation in the Doppler signal and where interesting
behaviour in the wavelet coefficients turns up. Specifically, large variation in
the fine-scale coefficients occurs at the beginning of the set of coefficients.
The ‘fine-scale’ coefficients correspond to identification of ‘high-frequency’

2.3 Multiresolution Analysis 37

information, and this ties in with the high frequencies in Doppler near the
start of the signal. However, large variation in coarser-level coefficients starts
much later, which ties in with the lower-frequency part of the Doppler signal.
Hence, the coefficients here are a kind of ‘time-frequency’ display of the
varying frequency information contained within the Doppler signal. At a given
time-scale location, (j, k), pair, the size of the coefficients gives information
on how much oscillatory power there is locally at that scale. From such a plot
one can clearly appreciate that there is a direct, but reciprocal, relationship
between scale and frequency (e.g. small scale is equivalent to high frequency,
and vice versa). The reader will not then be surprised to learn that these
kinds of coefficient plots, and developments thereof, are useful for time series
analysis and modelling. We will elaborate on this in Chapter 5.

2.3 Multiresolution Analysis

This section gives a brief and simple account of multiresolution analysis, which
is the theoretical framework around which wavelets are built. This section
will concentrate on introducing and explaining concepts. We shall quote
some results without proof. Full, comprehensive, and mathematical accounts
can be found in several texts such as Mallat (1989a,b), Meyer (1993b), and
Daubechies (1988, 1992).

The previous sections were prescient in the sense that we began our
discussion with a vector of data and, first, produced a set of detail coefficients
and a set of smooth coefficients (by differencing and averaging in pairs). It
can be appreciated that a function that has reasonable non-zero ‘fine-scale’
coefficients potentially possesses a more intricate structure than one whose
‘fine-scale’ coefficients are very small or zero. Further, one could envisage
beginning with a low-resolution function and then progressively adding finer
detail by inventing a new layer of detail coefficients and working back to
the sequence that would have produced them (actually the inverse wavelet
transform).

2.3.1 Multiresolution analysis

These kinds of considerations lead us on to ‘scale spaces’ of functions.
Informally, we might define the space Vj as the space (collection) of functions
with detail up to some finest scale of resolution. These spaces could possibly
contain functions with less detail, but there would be some absolute maximum
level of detail. Here larger j would indicate Vj containing functions with finer
and finer scales. Hence, one would expect that if a function was in Vj , then it
must also be in V� for � > j. Mathematically this is expressed as Vj ⊂ V� for
� > j. This means that the spaces form a ladder:

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · . (2.43)

38 2 Wavelets

As j becomes large and positive we include more and more functions of
increasingly finer resolution. Eventually, as j tends to infinity we want to
include all functions: mathematically this means that the union of all the Vj

spaces is equivalent to the whole function space we are interested in. As j
becomes large and negative we include fewer and fewer functions, and detail
is progressively lost. As j tends to negative infinity the intersection of all the
spaces is just the zero function.

The previous section using Haar wavelets was also instructive as it clearly
showed that the detail added at level j + 1 is somehow twice as fine as the
detail added at level j. Hence, this means that if f(x) is a member of Vj ,
then f(2x) (which is the same function but varies twice as rapidly as f(x))
should belong to Vj+1. We refer to this as interscale linkage. Also, if we take
a function f(x) and shift it along the line, say by an integral amount k, to
form f(x − k), then we do not change its level of resolution. Thus, if f(x) is
a member of V0, then so is f(x − k).

Finally, we have not said much about the contents of any of these Vj

spaces. Since the Haar father wavelet function φ(x) seemed to be the key
function in the previous sections for building up functions at various levels of
detail, we shall say that φ(x) is an element of V0 and go further to assume
that {φ(x − k)}k is an orthonormal basis for V0. Hence, because of interscale
linkage we can say that

{φj,k(x)}k∈Z forms an orthonormal basis for Vj . (2.44)

The conditions listed above form the basis for a multiresolution analysis
(MRA) of a space of functions. The challenge for wavelet design and devel-
opment is to find such φ(x) that can satisfy these conditions for a MRA, and
sometimes possess other properties, to be useful in various circumstances.

2.3.2 Projection notation

Daubechies (1988) introduced a projection operator Pj that projects a func-
tion into the space Vj . Since {φj,k(x)}k is a basis for Vj , the projection can
be written as

fj(x) =
∑

k∈Z

cj,kφj,k(x) = Pjf (2.45)

for some coefficients {cj,k}k. We saw this representation previously in (2.26)
applying to just Haar wavelets. Here, it is valid for more general father wavelet
functions, but the result is similar. Informally, Pjf can be thought of as the
‘explanation’ of the function f using just the father wavelets at level j, or, in
slightly more statistical terms, the ‘best fitting model’ of a linear combination
of φj,k(x) to f(x) (although this is a serious abuse of terminology because
(2.45) is a mathematical representation and not a stochastic one).

The orthogonality of the basis means that the coefficients can be computed
by

2.3 Multiresolution Analysis 39

cj,k =
∫ ∞

−∞
f(x)φj,k(x) dx =< f, φj,k >, (2.46)

where <,> is the usual inner product operator, see Appendix B.1.3.

2.3.3 The dilation equation and wavelet construction

From the ladder of subspaces in (2.43) space V0 is a subspace of V1. Since
{φ1k(x)} is a basis for V1, and φ(x) ∈ V0, we must be able to write

φ(x) =
∑

n∈Z

hnφ1n(x). (2.47)

This equation is called the dilation equation, and it is the generalization
of (2.30). The dilation equation is fundamental in the theory of wavelets as
its solution enables one to begin building a general MRA, not just for Haar
wavelets.

However, for Haar wavelets, if one compares (2.47) and (2.30), one can see
that the hn for Haar must be h0 = h1 = 1/

√
2.

The dilation equation controls how the scaling functions relate to each
other for two consecutive scales. In (2.30) the father wavelet can be con-
structed by adding two double-scale versions of itself placed next to each
other. The general dilation equation in (2.47) says that φ(x) is constructed by
a linear combination, hn, of double-scale versions of itself. Daubechies (1992)
provides a key result that establishes the existence and construction of the
wavelets

Theorem 1 (Daubechies (1992), p.135) If {Vj}j∈Z with φ form a mul-
tiresolution analysis of L2(R), then there exists an associated orthonormal
wavelet basis {ψj,k(x) : j, k ∈ Z} for L2(R) such that for j ∈ Z

Pj+1f = Pjf +
∑

k

< f,ψj,k > ψj,k(x). (2.48)

One possibility for the construction of the wavelet ψ(x) is

ψ̂(ω) = eiω/2m0(ω/2 + π)φ̂(ω/2), (2.49)

where ψ̂ and φ̂ are the Fourier transforms of ψ and φ respectively and where

m0(ω) =
1√
2

∑

n

hne−inω, (2.50)

or equivalently
ψ(x) =

∑

n

(−1)n−1h−n−1φ1,n(x). (2.51)

40 2 Wavelets

The function ψ(x) is known as the mother wavelet. The coefficient in (2.51)
is important as it expresses how the wavelet is to be constructed in terms of
the (next) finer-scale father wavelet coefficients. This set of coefficients has its
own notation:

gn = (−1)n−1h1−n. (2.52)

For Haar wavelets, using the values of hn from before gives us g0 = −1/
√

2
and g1 = 1/

√
2.

Daubechies’ Theorem 1 also makes clear that, from (2.48), the difference
between two projections (Pj+1−Pj)f can be expressed as a linear combination
of wavelets. Indeed, the space characterized by the orthonormal basis of
wavelets {ψj,k(x)}k is usually denoted Wj and characterizes the detail lost
in going from Pj+1 to Pj .

The representations given in (2.41) (Haar wavelets) and (2.48) (general
wavelets) can be telescoped to give a fine-scale representation of a function:

f(x) =
∑

k∈Z

cj0,kφj0,k(x) +
∞∑

j=j0

∑

k∈Z

dj,kψj,k(x). (2.53)

This useful representation says that a general function f(x) can be represented
as a ‘smooth’ or ‘kernel-like’ part involving the φj0,k and a set of detail
representations

∑
k∈Z

dj,kψj,k(x) accumulating information at a set of scales
j ranging from j0 to infinity. One can think of the first set of terms of
(2.53), φj0,k, representing the ‘average’ or ‘overall’ level of function and the
rest representing the detail. The φ(x) functions are not unlike many kernel
functions often found in statistics—especially in kernel density estimation
or kernel regression. However, the father wavelets, φ(x), tend to be used
differently in that for wavelets the ‘bandwidth’ is 2j0 with j0 chosen on
an integral scale, whereas the usual kernel bandwidth is chosen to be some
positive real number. It is possible to mix the ideas of ‘wavelet level’ and
‘kernel bandwidth’ and come up with a more general representation, such as
(4.16), that combines the strengths of kernels and wavelets, see Hall and Patil
(1995), and Hall and Nason (1997). We will discuss this more in Section 4.7

2.4 Vanishing Moments

Wavelets can possess a number of vanishing moments: a function ψ ∈ L2(R)
is said to have m vanishing moments if it satisfies

∫

x�ψ(x) dx = 0, (2.54)

for � = 0, . . . ,m − 1 (under certain technical conditions).
Vanishing moments are important because if a wavelet has m vanishing

moments, then all wavelet coefficients of any polynomial of degree m or less

2.5 WaveThresh Wavelets (and What Some Look Like) 41

will be exactly zero. Thus, if one has a function that is quite smooth and
only interrupted by the occasional discontinuity or other singularity, then the
wavelet coefficients ‘on the smooth parts’ will be very small or even zero if
the behaviour at that point is polynomial of a certain order or less.

This property has important consequences for data compression. If the
object to be compressed is mostly smooth, then the wavelet transform of the
object will be sparse in the sense that many wavelet coefficients will be exactly
zero (and hence their values do not need to be stored or compressed). The
non-zero coefficients are those that encode the discontinuities or non-smooth
parts. However, the idea is that for a ‘mostly smooth’ object there will be few
non-zero coefficients to compress further.

Similar remarks apply to many statistical estimation problems. Taking the
wavelet transform of an object is often advantageous as it results in a sparse
representation of that object. Having only a few non-zero coefficients means
that there are few coefficients that actually need to be estimated. In terms of
information, it is better to have n pieces of data to estimate a few coefficients
rather than n pieces of data to estimate n coefficients!

The wvmoments function in WaveThresh calculates the moments of wavelets
numerically.

2.5 WaveThresh Wavelets (and What Some Look Like)

2.5.1 Daubechies’ compactly supported wavelets

One of the most important achievements in wavelet theory was the construc-
tion of orthogonal wavelets that were compactly supported but were smoother
than Haar wavelets. Daubechies (1988) constructed such wavelets by an in-
genious solution of the dilation equation (2.47) that resulted in a family of
orthonormal wavelets (several families actually). Each member of each family
is indexed by a number N , which refers to the number of vanishing mo-
ments (although in some references N denotes the length of hn, which is
twice the number of vanishing moments). WaveThresh contains two families
of Daubechies wavelets which, in the package at least, are called the least-
asymmetric and extremal-phase wavelets respectively. The least-asymmetric
wavelets are sometimes known as symmlets. Real-valued compact orthonormal
wavelets cannot be symmetric or antisymmetric (unless it is the Haar wavelet,
see Daubechies (1992, Theorem 8.1.4)) and the least-asymmetric family is a
choice that tries to minimize the degree of asymmetry. A deft discussion of
the degree of asymmetry (or, more technically, departure from phase linear-
ity) and the phase properties of wavelet filters can be found in Percival and
Walden (2000, pp. 108–116). However, both compactly supported complex-
valued and biorthogonal wavelets can be symmetric, see Sections 2.5.2 and
2.6.5.

42 2 Wavelets

The key quantity for performing fast wavelet transforms is the sequence
of filter coefficients {hn}. In WaveThresh, the wd function has access to the
filter coefficients of various families through the filter.select function. In
WaveThresh, the ‘extremal-phase’ family has vanishing moments ranging from
one (Haar) to ten and the ‘least-asymmetric’ has them from four to ten.
Wavelets in these families possess members with higher numbers of vanishing
moments, but they are not stored within WaveThresh.

For example, to see the filter coefficients, {hn}, for Haar wavelets, we
examine the wavelet with filter.number=1 and family="DaubExPhase" as
follows:

> filter.select(filter.number=1, family="DaubExPhase")
$H
[1] 0.7071068 0.7071068

$G
NULL

$name
[1] "Haar wavelet"

$family
[1] "DaubExPhase"

$filter.number
[1] 1

The actual coefficients are stored in the $H component as an approximation
to the vector (1/

√
2, 1

√
2), as noted before. As another example, we choose

the wavelet with filter.number=4 and family="DaubLeAsymm" by:

> filter.select(filter.number=4, family="DaubLeAsymm")
$H
[1] -0.07576571 -0.02963553 0.49761867 0.80373875
[5] 0.29785780 -0.09921954 -0.01260397 0.03222310

$G
NULL

$name
[1] "Daub cmpct on least asymm N=4"

$family
[1] "DaubLeAsymm"

$filter.number
[1] 4

2.5 WaveThresh Wavelets (and What Some Look Like) 43

The length of the vector $H is eight, twice the number of vanishing moments.
It is easy to draw pictures of wavelets within WaveThresh. The following

draw.default commands produced the pictures of wavelets and their scaling
functions shown in Figure 2.8:

> oldpar<-par(mfrow=c(2,1))#To plot one fig above the other

> draw.default(filter.number=4, family="DaubExPhase",
+ enhance=FALSE, main="a.")

>draw.default(filter.number=4, family="DaubExPhase",
+ enhance=FALSE, scaling.function=TRUE, main="b.")

> par(oldpar)

The draw.default function is the default method for the generic draw
function. The generic function, draw(), can be used directly on objects
produced by other functions such as wd so as to produce a picture of the
wavelet that resulted in a particular wavelet decomposition. The picture of
the N = 10 ‘least-asymmetric’ wavelet shown in Figure 2.9 can be produced
with similar commands, but using the arguments filter.number=10 and
family="DaubExPhase".

−2 0 2 4

−
1.

0
0.

0
1.

0

a.

Daub cmpct on ext. phase N=4
x

ps
i

0 1 2 3 4 5 6 7

0.
0

1.
0

b.

Daub cmpct on ext. phase N=4
x

ph
i

Fig. 2.8. Daubechies ‘extremal-phase’ wavelet with four vanishing moments: (a)
mother wavelet and (b) father wavelet. Produced by f.wav2().

44 2 Wavelets

−15 −10 −5 0 5 10 15

−
0.

5
0.

5
a.

Daub cmpct on least asymm N=10
x

ps
i

0 5 10 15

−
0.

2
0.

4
1.

0

b.

Daub cmpct on least asymm N=10
x

ph
i

Fig. 2.9. Daubechies ‘least-asymmetric’ wavelet with ten vanishing moments: (a)
mother wavelet, and (b) father wavelet. Produced by f.wav3().

One can also use GenW to produce the wavelet transform matrix associated
with a Daubechies’ wavelet. For example, for the Daubechies’ extremal-phase
wavelet with two vanishing moments, the associated 8 × 8 matrix can be
produced using the command

> W2 <- t(GenW(n=8, filter.number=3, family="DaubExPhase"))

and looks like

> W2
[,1] [,2] [,3] [,4]

[1,] 0.35355339 0.35355339 0.35355339 0.35355339
[2,] 0.80689151 -0.33267055 0.00000000 0.00000000
[3,] -0.13501102 -0.45987750 0.80689151 -0.33267055
[4,] 0.03522629 0.08544127 -0.13501102 -0.45987750
[5,] 0.00000000 0.00000000 0.03522629 0.08544127
[6,] 0.08019599 0.73683030 0.34431765 -0.32938217
[7,] -0.23056099 -0.04589588 -0.19395265 -0.36155225
[8,] -0.38061458 -0.02274768 0.21973837 0.55347099

[,5] [,6] [,7] [,8]
[1,] 0.35355339 0.35355339 0.35355339 0.35355339
[2,] 0.03522629 0.08544127 -0.13501102 -0.45987750
[3,] 0.00000000 0.00000000 0.03522629 0.08544127

2.6 Other Wavelets 45

[4,] 0.80689151 -0.33267055 0.00000000 0.00000000
[5,] -0.13501102 -0.45987750 0.80689151 -0.33267055
[6,] -0.23056099 -0.04589588 -0.19395265 -0.36155225
[7,] 0.08019599 0.73683030 0.34431765 -0.32938217
[8,] 0.38061458 0.02274768 -0.21973837 -0.55347099

2.5.2 Complex-valued Daubechies’ wavelets

Complex-valued Daubechies’ wavelets (CVDW) are described in detail by
Lina and Mayrand (1995). For a given number of N vanishing moments
there are 2N−1 possible solutions to the equations that define the Daubechies’
wavelets, but not all are distinct. When N = 3, there are four solutions
but only two are distinct: two give the real extremal-phase wavelet and the
remaining two are a complex-valued conjugate pair. This N = 3 complex-
valued wavelet was also derived and illustrated by Lawton (1993) via ‘zero-
flipping’. Lawton further noted that, apart from the Haar wavelet, the only
compactly supported wavelets which are symmetric are CVDWs with an odd
number of vanishing moments (other, asymmetric complex-valued wavelets
are possible for higher N). The wavelet transform matrix, W , still exists for
these complex-valued wavelets but the matrix is now unitary (the complex-
valued version of orthogonal), i.e. it satisfies WW̄T = W̄T W = I, where
·̄ denotes complex conjugation.

Currently neither GenW nor draw can produce matrices or pictures of
complex-valued wavelets (although it would be not too difficult to modify
them to do so). Figure 2.10 shows pictures of the N = 3 real- and complex-
valued wavelets.

In WaveThresh, the complex-valued wavelet transform is carried out using
the usual wd function but specifying the family option to be "LinaMayrand"
and using a slightly different specification for the filter.number argument.
For example, for these wavelets with five vanishing moments there are four
different wavelets which can be used by supplying one of the numbers 5.1, 5.2,
5.3, or 5.4 as the filter.select argument. Many standard WaveThresh func-
tions for processing wavelet coefficients are still available for complex-valued
transforms. For example, the plot (or, more precisely, the plot.wd function)
function by default plots the modulus of the complex-valued coefficient at each
location. Arguments can be specified using the aspect argument to plot the
real part, or imaginary part, or argument, or almost any real-valued function
of the coefficient.

We show how complex-valued wavelets can be used for denoising purposes,
including some WaveThresh examples, in Section 3.14.

2.6 Other Wavelets

There exist many other wavelets and associated multiresolution analyses.
Here, we give a quick glimpse of the ‘wavelet zoo’ ! We refer the reader to

46 2 Wavelets

t
0.0 0.2 0.4 0.6 0.8 1.0

-0
.2

0.
0

0.
2

0.
4

t
0.0 0.2 0.4 0.6 0.8 1.0

-0
.2

0.
0

0.
1

0.
2

t
0.0 0.2 0.4 0.6 0.8 1.0

-0
.1

0.
0

0.
1

0.
2

0.
3

t
0.0 0.2 0.4 0.6 0.8 1.0

-0
.0

5
0.

05
0.

15
0.

25

Fig. 2.10. The wavelets (top) and scaling functions (bottom) for Daubechies’ wavelet
N = 3 (left) and complex Daubechies’ wavelet equivalent (right). The real part is
drawn as a solid black line and the imaginary part as a dotted line.

the comprehensive books by Daubechies (1992) and Chui (1997) for further
details on each of the following wavelets.

2.6.1 Shannon wavelet

The Haar scaling function, or father wavelet, given in (2.22) is localized in
the x (time or space) domain in that it is compactly supported (i.e., is only
non-zero on the interval [0, 1]). Its Fourier transform is given by

φ̂(ω) = (2π)−1/2e−iω/2 sinc(ω/2), (2.55)

where

sinc(ω) =
{

sin ω
ω for ω �= 0,
0 for ω = 0.

(2.56)

The sinc function is also known as the Shannon sampling function and is much
used in signal processing.

Note that φ̂(ω) has a decay like |ω|−1. So the Haar mother wavelet is
compactly supported in the x domain but with support over the whole of the
real line in the frequency domain with a decay of |ω|−1.

2.6 Other Wavelets 47

For the Shannon wavelet, it is the other way around. The wavelet is
compactly supported in the Fourier domain and has a decay like |x|−1 in
the time domain. Chui (1997, 3.1.5) defines the Shannon father wavelet to be

φS(x) = sinc(πx). (2.57)

The associated mother wavelet is given by Chui (1997, 4.2.4):

ψS(x) =
sin 2πx − cos πx

π(x − 1/2)
. (2.58)

Both φS and ψS are supported over R. The Fourier transform of ψS is given
in Chui (1997, 4.2.6) by

ψ̂S(ω) = −e−iω/2I[−2π,−π)∪(π,2π](ω), (2.59)

in other words compactly supported on (π, 2π] and its reflection in the origin.
The Shannon wavelet is not that different from the Littlewood–Paley

wavelet given in Daubechies (1992, p. 115) by

ψ(x) = (πx)−1(sin 2πx − sin πx). (2.60)

In statistics the Shannon wavelet seems to be rarely used, certainly in
practical applications. In a sense, it is the Fourier equivalent of the Haar
wavelet, and hence certain paedagogical statements about wavelets could be
made equally about Shannon as about Haar. However, since Haar is easier to
convey in the time domain (and possibly because it is older), it is usually Haar
that is used. However, the Shannon wavelet is occasionally used in statistics
in a theoretical setting. For example, Chui (1997) remarks that Daubechies
wavelets, with very high numbers of vanishing moments, ‘imitate’ the Shannon
wavelet, which can be useful in understanding the behaviour of those higher-
order wavelets in, for example, estimation of the spectral properties of wavelet-
based stochastic processes, see Section 5.3.5.

2.6.2 Meyer wavelet

The Meyer wavelet, see Daubechies (1992, p. 116), has a similar Fourier
transform to the Shannon wavelet but with the ‘sharp corners’ of its compact
support purposely smoothed out, which results in a wavelet with faster decay.
Meyer wavelets are used extensively in the analysis of statistical inverse
problems. Such problems are often expressed as convolution problems which
are considerably simplified by application of the Fourier transform, and the
compact support of the Meyer wavelet in that domain provides computational
benefits. See Kolaczyk (1994, 1996), who first introduced these ideas. For an
important recent work that combines fast Fourier and wavelet transforms, and
a comprehensive overview of the area see Johnstone et al. (2004). We discuss
statistical inverse problems further in Section 4.9.

48 2 Wavelets

2.6.3 Spline wavelets

Chui (1997) provides a comprehensive introduction to wavelet theory and
to spline wavelets. In particular, Chui (1997) defines the first-order cardinal
B-spline by the Haar father wavelet defined in (2.22):

N1(x) = φ(x). (2.61)

The mth-order cardinal B-spline, m ≥ 2, is defined by the following recursive
convolution:

Nm(x) =
∫ ∞

−∞
Nm−1(x − u)N1(u) du (2.62)

=
∫ 1

0

Nm−1(x − u) du,

in view of the definition of N1.
On taking Fourier transforms since convolutions turn into products, (2.63)

turns into:
N̂m(ω) = N̂m−1(ω)N̂1(ω) = . . . = N̂m

1 (ω). (2.63)

What is the Fourier transform of N1(x)? We could use (2.55), but it is more
useful at this point to take the Fourier transform of both sides of the two-scale
Equation (2.30), which in cardinal B-spline notation is

N1(x) = N1(2x) + N1(2x − 1), (2.64)

and taking Fourier transforms gives

N̂1(ω) = (2π)−1/2

{∫

N1(2x)e−iωx dx +
∫

N1(2x − 1)e−iωx dx.

}

=
1
2
(2π)−1/2

{∫

N1(y)e−iyω/2 dy +
∫

N1(y)e−i(y+1)ω/2 dy

}

=
1
2
(1 + e−iω/2)N̂1(ω/2), (2.65)

by substituting y = 2x and y = 2x − 1 in the integrals on line 1 of (2.65).
Hence using (2.63) and (2.65) together implies that

N̂m(ω) =
(

1 + e−iω/2

2

)m

N̂m(ω/2). (2.66)

Chui (1997) shows that (2.66) translates to the following formula in the
x domain:

Nm(x) = 2−m+1
m∑

k=0

(
m
k

)

Nm(2x − k), (2.67)

2.6 Other Wavelets 49

and this formula defines the two-scale relation for the mth-order cardinal
B-spline. For example, for m = 2 the two-scale relation (2.67) becomes

N2(x) = 2−1 {N2(2x) + 2N2(2x − 1) + N2(2x − 2)} . (2.68)

In view of (2.63) the cardinal B-splines are compactly supported and,
using two-scale relations such as (2.67), they can be used as scaling functions
to start a multiresolution analysis. The mth-order cardinal spline B-wavelet
can be generated by

ψm(x) =
3m−2∑

k=0

qkNm(2x − k), (2.69)

where

qk =
(−1)k

2m−1

m∑

�=0

(
m
�

)

N2m(k − � + 1), (2.70)

see formulae (5.2.25) and (5.2.24) respectively in Chui (1997). Hence since the
cardinal B-splines are compactly supported, the cardinal spline B-wavelet is
also compactly supported. However, these spline wavelets are not orthogonal
functions, which makes them less attractive for some applications such as
nonparametric regression.

The cardinal spline B-wavelets can be orthogonalized according to an
‘orthogonalization trick’, see Daubechies (1992, p. 147) for details. These
orthogonalized wavelets are known as the Battle–Lemarié wavelets. Strömberg
wavelets are also a kind of orthogonal spline wavelet with similar properties to
Battle–Lemarié wavelets, see Daubechies (1992, p. 116) or Chui (1997, p. 75)
for further details.

2.6.4 Coiflets

Coiflets have similar properties to Daubechies wavelets except the scaling
function is also chosen so that it has vanishing moments. In other words,
the scaling function satisfies (2.54) with φ instead of ψ and for moments
� = 1, . . . , m. Note � = 0 is not possible since for all scaling functions we must
have

∫
φ(x) dx �= 0. Coiflets are named in honour of R. Coifman, who first

requested them, see Daubechies (1992, Section 8.2) for more details.

2.6.5 Biorthogonal wavelets

In what we have seen up to now a wavelet, ψ(x), typically performs both
an analysis and a synthesis role. The analysis role means that the wavelet
coefficients of a function f(x) can be discovered by

dj,k =
∫

f(x)ψj,k(x) dx. (2.71)

50 2 Wavelets

Further, the same wavelet can be used to form the synthesis of the function
as in (2.41). With biorthogonal wavelets two functions are used, the analyzing
wavelet, ψ(x), and its dual, the synthesizing wavelet ψ̃(x). In regular Euclidean
space with an orthogonal basis, one can read off the coefficients of the com-
ponents of a vector simply by looking at the projection onto the (orthogonal)
basis elements. For a non-orthogonal basis, one constructs a dual basis with
each dual basis element orthogonal to a corresponding original basis element
and the projection onto the dual can ‘read off’ the coefficients necessary for
synthesis. Put mathematically this means that < ψj,k, ψ̃�,m >= δj,�δk,m, see
Jawerth and Sweldens (1994).

Filtering systems (filter banks) predating wavelets were known in the signal
processing literature, see, e.g., Nguyen and Vaidyanathan (1989), and Vetterli
and Herley (1992). For a tutorial introduction to filter banks see Vaidyanathan
(1990). The connections to wavelets and development of compactly supported
wavelets are described by Cohen et al. (1992).

2.7 The General (Fast) Discrete Wavelet Transform

2.7.1 The forward transform

In Section 2.2.3 we explained how to compute coarser-scale Haar wavelet
coefficients. In this section, we will explain how this works for more general
wavelet coefficients defined in Section 2.3.

Suppose we have a function f(x) ∈ L2(R). How can we obtain coarser-level
father wavelet coefficients from finer ones, say, level J −1 from J? To see this,
recall that the father wavelet coefficients of f(x) at level J − 1 are given by

cJ−1,k =
∫

R

f(x)φJ−1,k(x) dx, (2.72)

since {φJ−1,k(x)}k is an orthonormal basis for VJ−1.
We now need an expression for φJ−1,k(x) in terms of φJ,�(x) and use the

dilation equation (2.47) for this:

φJ−1,k(x) = 2(J−1)/2φ(2J−1x − k)

= 2(J−1)/2
∑

n

hnφ1,n(2J−1x − k)

= 2(J−1)/2
∑

n

hn21/2φ
{
2(2J−1x − k) − n

}

= 2J/2
∑

n

hnφ(2Jx − 2k − n)

=
∑

n

hnφJ,n+2k(x). (2.73)

In fact, (2.47) is a special case of (2.73) with J = 1 and k = 0.

2.7 The General (Fast) Discrete Wavelet Transform 51

Now let us substitute (2.73) into (2.72) to obtain

cJ−1,k =
∫

R

f(x)
∑

n

hnφJ,n+2k(x) dx

=
∑

n

hn

∫

R

f(x)φJ,n+2k(x) dx

=
∑

n

hncJ,n+2k, (2.74)

or, with a little rearrangement, in its usual form:

cJ−1,k =
∑

n

hn−2kcJ,n. (2.75)

An equation to obtain wavelet coefficients at scale J−1 from father wavelet
coefficients at scale J can be developed in a similar way. Instead of using
the scaling function dilation equation, we use the analogous Equation (2.51)
in (2.73), and then after some working we obtain

dJ−1,k =
∑

n

gn−2kcJ,n. (2.76)

Note that (2.75) and (2.76) hold for any scale j replacing J for j = 1, . . . , J .

2.7.2 Filtering, dyadic decimation, downsampling

The operations described by Equations (2.75) and (2.76) can be thought of in
another way. For example, we can achieve the same result as (2.75) by first
filtering the sequence {cJ,n} with the filter {hn} to obtain

c∗J−1,k =
∑

n

hn−kcJ,n. (2.77)

This is a standard convolution operation. Then we could pick ‘every other
one’ to obtain cJ−1,k = c∗J−1,2k. This latter operation is known as dyadic
decimation or downsampling by an integer factor of 2. Here, we borrow
the notation of Nason and Silverman (1995) and define the (even) dyadic
decimation operator D0 by

(D0x)� = x2�, (2.78)

for some sequence {xi}.
Hence the operations described by Formulae (2.75) and (2.76) can be

written more succinctly as

cJ−1 = D0HcJ and dJ−1 = D0GcJ , (2.79)

52 2 Wavelets

where H and G denote the regular filtering operation, e.g. (2.77). In (2.79) we
have denoted the input and outputs to these operations using a more efficient
vector notation, cJ , cJ−1, dJ−1, rather than sequences.

Nason and Silverman (1995) note that the whole set of discrete wavelet
transform (coefficients) can be expressed as

dj = D0G (D0H)J−j−1
cJ , (2.80)

for j = 0, . . . , J − 1 and similarly for the father wavelet coefficients:

cj = (D0H)J−j
cJ , (2.81)

for the same range of j. Remember dj and cj here are vectors of length 2j (for
periodized wavelet transforms).

This vector/operator notation is useful, particularly because the computa-
tional units D0G and D0H can be compartmentalized in a computer program
for easy deployment and robust checking. However, the notation is mathemat-
ically liberating and of great use when developing more complex algorithms
such as the non-decimated wavelet transform, the wavelet packet transform,
or combinations of these. Specifically, one might have wondered why we chose
‘even’ dyadic decimation, i.e. picked out each even element x2j rather than
the odd indexed ones, x2j+1. This is a good question, and the ‘solution’ is the
non-decimated transform which we describe in Section 2.9. Wavelet packets
we describe in Section 2.11 and non-decimated wavelet packets in Section 2.12.

2.7.3 Obtaining the initial fine-scale father coefficients

In much of the above, and more precisely at the beginning of Section 2.7.1, we
mentioned several times that the wavelet transform is initiated from a set of
‘finest-scale’ father wavelet coefficients, {cJ,k}k∈Z. Where do these mysterious
finest-scale coefficients come from? We outline two approaches.

A deterministic approach is described in Daubechies (1992, Chapter 5,
Note 12). Suppose the information about our function comes to us as samples,
i.e. our information about a function f comes to us in terms of function
values at a set of integers: f(n), n ∈ Z. Suppose that we wish to find the
father coefficients of that f ∈ V0 (‘information’ orthogonal to V0 cannot be
recovered; whether your actual f completely lies in V0 is another matter).

Now, since f ∈ V0, we have

f(x) =
∑

k

< f, φ0,k > φ0,k(x), (2.82)

where < ·, · > indicates the inner product, again see Appendix B.1.3.
Therefore

f(n) =
∑

k

< f, φ0,k > φ(n − k). (2.83)

2.7 The General (Fast) Discrete Wavelet Transform 53

Applying the discrete Fourier transform (Appendix B.1.7) to both sides of
(2.83) gives

∑

n

f(n)e−iωn =
∑

k

< f, φ0,k >
∑

n

φ(n − k)e−iωn

=
∑

k

< f, φ0,k >
∑

m

φ(m)e−iω(m+k)

=

{
∑

k

< f, φ0,k > e−iωk

}{
∑

m

φ(m)e−iωm

}

= Φ(ω)
∑

k

< f, φ0,k > e−iωk, (2.84)

where Φ(ω) =
∑

m φ(m)e−iωm is the discrete Fourier transform of {φm(x)}m.
Our objective is to obtain the coefficients c0k =< f, φ0,k >. To do this,

rearrange (2.84) and introduce notation F (ω), to obtain
∑

k

< f, φ0,k > e−iωk = Φ−1(ω)
∑

n

f(n)e−iωn = F (ω). (2.85)

Hence taking the inverse Fourier transform of (2.85) gives

< f, φ0,k > = (2π)−1

∫ 2π

0

F (ω)eiωkdω

= (2π)−1

∫ 2π

0

∑

n

f(n)e−iω(n−k)Φ−1(ω)dω

=
∑

n

f(n)(2π)−1

∫ 2π

0

e−iω(n−k)Φ−1(ω)dω

=
∑

n

an−kf(n), (2.86)

where am = (2π)−1
∫ 2π

0
e−iωmΦ−1(ω)dω.

For example, for the Daubechies’ ‘extremal-phase’ wavelet with two van-
ishing moments we have φ(0) ≈ 0.01, φ(1) ≈ 1.36, φ(2) ≈ −0.36, and
φ(n) = 0, n �= 0, 1, 2. This can be checked by drawing a picture of this scaling
function. For example, using the WaveThresh function:

> draw.default(filter.number=2, family="DaubExPhase",
+ scaling.function=TRUE)

Hence denoting φ(n) by φn to save space

Φ(ω) =
∑

m

φ(m)e−iωm ≈ φ0 + φ1e
−iω + φ2e

−2iω, (2.87)

and

54 2 Wavelets

|Φ(ω)|2 = φ2
0 + φ2

1 + φ2
2 + 2(φ0φ1 + φ1φ2) cos ω + 2φ0φ2 cos(2ω)

= φ2
1 + 2φ1φ2 cos ω, (2.88)

which is very approximately a constant. Here, am = const × δ0,m for some
constant and < f, φ0,k >≈ const × f(k). So, one might claim that one only
needs to initialize the wavelet transform using the original function samples.
However, it can be seen that the above results in a massive approximation,
which is prone to error. Taking the V0 scaling function coefficients to be the
samples is known as the ‘wavelet crime’, as coined by Strang and Nguyen
(1996). The crime can properly be avoided by computing Φ(ω) and using
more accurate am.

A stochastic approach. A somewhat more familiar approach can be adopted
in statistical situations. For example, in density estimation, one might be
interested in collecting independent observations, X1, . . . , Xn, from some,
unknown, probability density f(x). The scaling function coefficients of f are
given by

< f, φj,k >=
∫

f(x)φj,k(x) dx = E [φj,k(X)] . (2.89)

Then an unbiased estimator of < f, φj,k > is given by the equivalent sample
quantity, i.e.

̂< f, φj,k > = n−1
n∑

i=1

φj,k(Xi). (2.90)

The values φj,k(Xi) can be computed efficiently using the algorithm given in
Daubechies and Lagarias (1992). Further details on this algorithm and its use
in density estimation can be found in Herrick et al. (2001).

2.7.4 Inverse discrete wavelet transform

In Section 2.2.5, Formula (2.42) showed how to obtain coarser father and
mother wavelet coefficients from father coefficients at the next finer scale.
These formulae are more usually written for a general scale as something like

cj−1,k = (cj,2k + cj,2k+1)/
√

2,

dj−1,k = (cj,2k − cj,2k+1)/
√

2. (2.91)

Now suppose our problem is how to invert this operation: i.e. given the
cj−1,k, dj−1,k, how do we obtain the cj,2k and cj,2k+1? One can solve the
equations in (2.91) and obtain the following formulae:

cj,2k = (cj−1,k + dj−1,k) /
√

2,

cj,2k+1 = (cj−1,k − dj−1,k) /
√

2. (2.92)

The interesting thing about (2.92) is that the form of the inverse relationship
is exactly the same as the forward relationship in (2.91).

2.8 Boundary Conditions 55

For general wavelets Mallat (1989b) shows that the inversion relation is
given by

cj,n =
∑

k

hn−2kcj−1,k +
∑

k

gn−2kdj−1,k, (2.93)

where hn, gn are known as the quadrature mirror filters defined by (2.47) and
(2.52). Again, the filters used for computing the inverse transform are the
same as those that computed the forward one.

Earlier, in Section 2.1.3, Equation (2.17) displayed the matrix representa-
tion of the Haar wavelet transform. We also remarked in that section that the
matrix was orthogonal in that WT W = I. This implies that the inverse trans-
form to the Haar wavelet transform is just WT . For example, the transpose
of (2.17) is

WT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
2/4 1/

√
2 0 0 0 1/2 0

√
2/4√

2/4 −1/
√

2 0 0 0 1/2 0
√

2/4√
2/4 0 1/

√
2 0 0 −1/2 0

√
2/4√

2/4 0 −1/
√

2 0 0 −1/2 0
√

2/4√
2/4 0 0 1/

√
2 0 0 1/2 −

√
2/4√

2/4 0 0 −1/
√

2 0 0 1/2 −
√

2/4√
2/4 0 0 0 1/

√
2 0 −1/2 −

√
2/4√

2/4 0 0 0 −1/
√

2 0 −1/2 −
√

2/4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(2.94)

Example 2.4. Let us continue Example 2.3, where we computed the discrete
Haar wavelet transform on vector y to produce the object ywd. The inverse
transform is performed using the wr function as follows:

> yinv <- wr(ywd)

and if we examine the contents of the inverse transformed vector we obtain

> yinv
[1] 1 1 7 9 2 8 8 6

So yinv is precisely the same as y, which is exactly what we planned.

2.8 Boundary Conditions

One nice feature of Haar wavelets is that one does not need to think about
computing coefficients near ‘boundaries’. If one has a dyadic sequence, then
the Haar filters transform that sequence in pairs to produce another dyadic
sequence, which can then be processed again in the same way. For more general
Daubechies wavelets, one has to treat the issue of boundaries more carefully.

For example, let us examine again the simplest compactly supported
Daubechies’ wavelet (apart from Haar). The detail filter associated with

56 2 Wavelets

this wavelet has four elements, which we have already denoted in (2.52)
by {gk}3

k=0. (It is, approximately, (0.482,−0.837, 0.224,−0.129), and can be
produced by the filter.select function in WaveThresh.)

Suppose we have the dyadic data vector x0, . . . , x31. Then the ‘first’
coefficient will be

∑3
k=0 gkxk. Due to even dyadic decimation the next

coefficient will be
∑3

k=0 gkxk+2. The operation can be viewed as a window of
four gk consecutive coefficients initially coinciding with the first four elements
of {xk} but then skipping two elements ‘to the right’ each time.

However, one could also wonder what happens when the window also skips
to the left, i.e.

∑3
k=0 gkxk−2. Initially, this seems promising as x0, x1 are

covered when k = 2, 3. However, what are x−2, x−1 when k = 0, 1? Although
it probably does not seem to matter very much here as we are only ‘missing’
two observations (x−1, x−2), the problem becomes more ‘serious’ for longer
filters corresponding to smoother Daubechies’ wavelets with a larger number
of vanishing moments (for example, with ten vanishing moments the filter
is of length 20. So, again we could have x−1, x−2 ‘missing’ but still could
potentially make use of the information in x0, . . . , x17).

An obvious way of coping with this boundary ‘problem’ is to artificially ex-
tend the boundary in some way. In the examples discussed above this consists
of artificially providing the ‘missing’ observations. WaveThresh implements
two types of boundary extension for some routines: periodic and symmetric
end reflection. The function wd possesses both options, but many other func-
tions just have the periodic extension. Periodic extension is sometimes also
known as being equivalent to using periodized wavelets (for the discrete case).

For a function f defined on the compact interval, say, [0, 1], then periodic
extension assumes that f(−x) = f(1 − x). That is information to the
‘left’ of the domain of definition is actually obtained from the right-hand
end of the function. The formula works for both ends of the function, i.e.,
f(−0.2) = f(0.8) and f(1.2) = f(0.2). Symmetric end reflection assumes
f(−x) = f(x) and f(1 + x) = f(1 − x) for x ∈ [0, 1]. To give an example, in
the example above x−1, x−2 would actually be set to x31 and x30 respectively
for periodic extension and x1 and x2 respectively for symmetric end reflection.
In WaveThresh, these two options are selected using the bc="periodic" or
bc="symmetric" arguments.

In the above we have talked about adapting the data so as to handle
boundaries. The other possibility is to leave the data alone and to modify
the wavelets themselves. In terms of mathematical wavelets the problem of
boundaries occurs when the wavelet, at a coarse scale, is too big, or too big and
too near the edge (or over the edge) compared with the interval that the data
are defined upon. One solution is to modify the wavelets that overlap the edge
by replacing them with special ‘edge’ wavelets that retain the orthogonality
of the system.

The solutions above either wrap the function around on itself (as much as
is necessary) for periodized wavelets or reflect the function in its boundaries.
The other possibility is to modify the wavelet so that it always remains on

2.9 Non-decimated Wavelets 57

the original data domain of definition. This wavelet modification underlies
the procedure known as ‘wavelets on the interval’ due to Cohen et al. (1993).
This procedure produces wavelet coefficients at progressively coarser scales but
does not borrow information from periodization or reflection. In WaveThresh
the ‘wavelets on the interval’ method is implemented within the basic wavelet
transform function, wd, using the bc="interval" option.

2.9 Non-decimated Wavelets

2.9.1 The ε-decimated wavelet transform

Section 2.7.2 described the basic forward discrete wavelet transform step as a
filtering by H followed by a dyadic decimation step D0. Recall that the dyadic
decimation step, D0, essentially picked every even element from a vector. The
question was raised there about why, for example, was not every odd element
picked from the filtered vector instead? The answer is that it could be. For
example, we could define the odd dyadic decimation operator D1 by

(D1x)� = x2�+1, (2.95)

and then the jth level mother and father wavelet coefficients would be
obtained by the same formulae as in (2.80) and (2.81), but replacing D0 by
D1. As Nason and Silverman (1995) point out, this is merely a selection of a
different orthogonal basis to the one defined by (2.80) and (2.81).

Nason and Silverman (1995) further point out that, at each level, one
could choose either to use D0 or D1, and a particular orthogonal basis could
be labelled using the zeroes or ones implicit in the choice of particular D0

or D1 at each stage. Hence, a particular basis could be represented by the
J-digit binary number ε = εJ−1εJ−2 · · · ε0, where εj is one if D1 was used
to produce level j and zero if D0 was used. Such a transform is termed the
ε-decimated wavelet transform. Inversion can be handled in a similar way.

Now let us return to the finest scale. It can be easily seen that the effect of
D1 can be achieved by first cyclically ‘rotating’ the sequence by one position
(i.e., making xk+1 = xk and x0 = x2J−1) and then applying D0, i.e. D1 = D0S,
where S is the shift operator defined by (Sx)j = xj+1. By an extension of
this argument, and using the fact that SD0 = D0S2, and that S commutes
with H and G, Nason and Silverman (1995) show that the basis vectors of the
ε-decimated wavelet transform can be obtained from those of the standard
discrete wavelet transform (DWT) by applying a particular shift operator.
Hence, they note, the choice of ε corresponds to a particular choice of ‘origin’
with respect to which the basis functions are defined.

An important point is, therefore, that the standard DWT is dependent on
choice of origin. A shift of the input data can potentially result in a completely
different set of wavelet coefficients compared to those of the original data. For
some statistical purposes, e.g., nonparametric regression, we probably would

58 2 Wavelets

not want our regression method to be sensitive to the choice of origin. Indeed,
typically we would prefer our method to be invariant to the origin choice, i.e.
translation invariant.

2.9.2 The non-decimated wavelet transform (NDWT)

Basic idea. The standard decimated DWT is orthogonal and transforms
information from one basis to another. The Parseval relation shows that the
total energy is conserved after transformation.

However, there are several applications where it might be useful to retain
and make use of extra information. For example, in Examples 2.2 on p. 21
coefficient d2,1 = (y2 − y1)/

√
2 and d2,2 = (y4 − y3)/

√
2. These first two

coefficients encode the difference between (y1, y2) and (y3, y4) respectively, but
what about information that might be contained in the difference between y2

and y3? The values y2, y3 might have quite different values, and hence not
forming a difference between these two values might mean we miss something.

Now suppose we follow the recipe for the ε-decimated transform given in
the previous section. If the original sequence had been rotated cyclically by
one position, then we would obtain the sequence (y8, y1, . . . , y7), and then
on taking the Haar wavelet transform as before gives d2,2 = (y3 − y2)/

√
2.

Applying the transform to the cyclically shifted sequence results in wavelet
coefficients, as before, but the set that appeared to be ‘missing’ as noted
above.

Hence, if we wish to retain more information and not ‘miss out’ potentially
interesting differences, we should keep both the original set of wavelet coeffi-
cients and also the coefficients that resulted after shifting and transformation.
However, one can immediately see that keeping extra information destroys
the orthogonal structure and the new transformation is redundant. (In par-
ticular, one could make use of either the original or the shifted coefficients to
reconstruct the original sequence.)

More precisely. The idea of the non-decimated wavelet transform (NDWT)
is to retain both the odd and even decimations at each scale and continue
to do the same at each subsequent scale. So, start with the input vector
(y1, . . . , yn), then apply and retain both D0Gy and D1Gy—the odd and even
indexed ‘wavelet’ filtered observations. Each of these sequences is of length
n/2, and so, in total, the number of wavelet coefficients (both decimations)
at the finest scale is 2 × n/2 = n.

We perform a similar operation to obtain the finest-scale father wavelet
coefficients and compute D0Hy (n/2 numbers) and D1Hy (n/2 numbers).
Then for the next level wavelet coefficients we apply both D0G and D1G to
both of D0Hy and D1Hy. The result of each of these is n/4 wavelet coefficients
at scale J−2. Since there are four sets, the total number of coefficients is n. A
flow diagram illustrating the operation of the NDWT is shown in Figure 2.11.

2.9 Non-decimated Wavelets 59

d1 d0

c1 c0

d11
d01d10 d00

c11 c01c10 c00

D1GD1G

D1G

D1 DH 1H

D1H

D0 DG 0G

D0G

D0 DH 0H

D0H

y

Fig. 2.11. Non-decimated wavelet transform flow diagram. The finest-scale wavelet
coefficients are d0 and d1. The next finest scale are d00, d01, d10, d11. The coefficients
that only have 0 in the subscript correspond to the usual wavelet coefficients.

Continuing in this way, at scale J − j there will be 2j sets of coefficients
each of length 2−jn for j = 1, . . . , J (remember n = 2J). For the ‘next’ coarser
scale, there will be twice the number of sets of wavelet coefficients that are
half the length of the existing ones. Hence, the number of wavelet coefficients
at each scale is always 2−jn × 2j = n. Since there are J scales, the total
number of coefficients produced by the NDWT is Jn, and since J = log2 n,
the number of coefficients produced is sometimes written as n log2 n. Since the
production of each coefficient requires a fixed number of operations (which
depends on the length of the wavelet filter in use), the computational effort
required to compute the NDWT is also O(n log2 n). Although not as ‘fast’ as
the discrete wavelet transform, which is O(n), the non-decimated algorithm

60 2 Wavelets

is still considered to be a fast algorithm (the log2 n is considered almost to be
‘constant’).

We often refer to these ‘sets’ of coefficients as packets. These packets are
different from the wavelet packets described in 2.11, although their method of
computation is structurally similar.

Getting rid of the ‘origin-sensitivity’ is a desirable goal, and many authors
have introduced the non-decimated ‘technique’ working from many points of
view and on many problems. See, for example, Holschneider et al. (1989),
Beylkin et al. (1991), Mallat (1991), and Shensa (1992). Also, Pesquet et al.
(1996) list several papers that innovate in this area. One of the earliest
statistical mentions of the NDWT is known as the maximal-overlap wavelet
transform developed by Percival and Guttorp (1994); Percival (1995). In the
latter work, the utility of the NDWT is demonstrated when attempting to
estimate the variance within a time series at different scales. We discuss this
further in Section 5.2.2. Coifman and Donoho (1995) introduced a NDWT that
produced coefficients as ‘packets’. They considered different ε-decimations as
‘cycle spins’ and then used the results of averaging over several (often all)
cycle spins as a means for constructing a translation-invariant (TI) regression
method. We describe TI-denoising in more detail in Section 3.12.1. Nason and
Silverman (1995) highlight the possibility for using non-decimated wavelets
for determining the spectrum of a nonstationary or evolving time series. This
latter idea was put on a sound theoretical footing by Nason et al. (2000),
who introduced locally stationary wavelet processes: a class of nonstationary
evolving time series constructed from non-decimated discrete wavelets, see
Section 5.3.

Note that Nason and Silverman (1995) called the NDWT the ‘stationary’
wavelet transform. This turns out not to be a good name because the NDWT
is actually useful for studying nonstationary time series, see Section 5.3.
However, some older works occasionally refer to the older name.

2.9.3 Time and packet NDWT orderings

We have already informally mentioned two of the usual ways of presenting, or
ordering, non-decimated wavelet coefficients. Let us again return to our simple
example of (y1, y2, . . . , y8). We could simply compute the non-decimated
coefficients in time order (we omit the

√
2 denominator for clarity):

(y2 − y1), (y3 − y2), (y4 − y3), (y5 − y4), (y6 − y5), (y7 − y6), (y8 − y7), (y1 − y8).
(2.96)

Or we could make direct use of the flow diagram depicted in Figure 2.11 to see
the results of the non-decimated transform (to the first scale) as two packets:
D0G:

(y2 − y1), (y4 − y3), (y6 − y5), (y8 − y7), (2.97)

or the odd decimation D1G packet as

2.9 Non-decimated Wavelets 61

(y3 − y2), (y5 − y4), (y7 − y6), (y1 − y8). (2.98)

The coefficients contained within (2.96) and both (2.97) and (2.98) are exactly
the same; it is merely the orderings that are different. One can continue in
either fashion for coarser scales, and this results in a time-ordered NDWT
or a packet-ordered one. The time-ordered transform can be achieved via a
standard filtering (convolution) operation as noticed by Percival (1995), and
hence it is easy to make this work for arbitrary n, not just n = 2J . The
packet-ordered transform produces packets as specified by the flow diagram
in Figure 2.11.

The time-ordered transform is often useful for time series applications
precisely because it is useful to have the coefficients in the same time order
as the original data, see Section 5.3. The packet-ordered transform is often
useful for nonparametric regression applications as each packet of coefficients
corresponds to a particular type of basis element and it is convenient to apply
modifications to whole packets and to combine packets flexibly to construct
estimators, see Section 3.12.1.

Example 2.5. Let us return again to our simple example. Let (y1, . . . , yn) =
(1, 1, 7, 9, 2, 8, 8, 6). In WaveThresh the time-ordered wavelet transform is
carried out using, again, the function wd but this time using the argument
type="station". For example,

> ywdS <- wd(y, filter.number=1, family="DaubExPhase",
+ type="station")

computes the NDWT using Haar wavelets. Different wavelets can be selected
by supplying values to the filter.number and family arguments as described
in Section 2.5.1.

Recall that in Example 2.3 we computed the (decimated) discrete wavelet
transform of y and deposited it in the ywd object. Recall also that we extracted
the finest-scale wavelet coefficients with the command

> accessD(ywd, level=2)
[1] 0.000000 -1.414214 -4.242641 1.414214

Let us do the same with our non-decimated object stored in ywdS:

> accessD(ywdS, level=2)
[1] 0.000000 -4.242641 -1.414214 4.949747 -4.242641
[6] 0.000000 1.414214 3.535534

As emphasized above, see how the original decimated wavelet coefficients
appear at positions 1, 3, 5, 7 of the non-decimated vector—these correspond
to the even dyadic decimation operator D0. (Positions 1, 3, 5, 7 are actually
odd, but in the C programming language—which much of the low level of
WaveThresh is written in—the positions are actually 0, 2, 4, 6. C arrays start
at 0 and not 1.)

62 2 Wavelets

Example 2.6. Now let us apply the packet-ordered transform. This is carried
out using the wst function:

> ywst <- wst(y, filter.number=1, family="DaubExPhase")

Let us look again at the finest-scale coefficients:

> accessD(ywst, level=2)
[1] 0.000000 -1.414214 -4.242641 1.414214 -4.242641
[6] 4.949747 0.000000 3.535534

Thus, like the previous example, the number of coefficients at the finest scale
is eight, the same as the length of y. However, here the first four coefficients
are just the even-decimated wavelet coefficients (the same as the decimated
wavelet coefficients from ywd) and the second four are the oddly decimated
coefficients.

Although we have accessed the finest-scale coefficients using accessD, since
the coefficients in ywdS are packet-ordered, it is more useful to be able to
extract packets of coefficients. This extraction can be carried out using the
getpacket function. For example, to extract the odd-decimated coefficients
type:

> getpacket(ywst, level=2, index=1)
[1] -4.242641 4.949747 0.000000 3.535534

and use index=0 to obtain the even-decimated coefficients.
What about packets at coarser levels? In Figure 2.11, at the second finest

scale (J − 2, if J = 3 this is level 1), there should be four packets of length
2 which are indexed by binary 00, 01, 10, and 11. These can be obtained by
supplying the level=1 argument and setting the index argument to be the
base ten equivalent of the binary 00, 01, 10, or 11. For example, to obtain the
10 packet type:

> getpacket(ywst, level=1, index=3)
[1] -2.5 -0.5

Example 2.7. We have shown above that the time-ordered and packet-ordered
NDWTs are equivalent; it is just the orderings that are different. Hence, it
should be possible to easily convert one type of object into another. This is
indeed the case. For example, one could easily obtain the finest-scale time-
ordered coefficients merely by interweaving the two sets of packet-ordered
coefficients. Similar weavings operate at different scales, and details can be
found in Nason and Sapatinas (2002). In WaveThresh, the conversion between
one object and another is carried out using the convert function. Used on a
wst class object it produces the wd class object and vice versa.

For example, if we again look at the finest-scale coefficients of the ywst
object after conversion to a wd object, then we should observe the same
coefficients as if we applied accessD directly to ywd. Thus, to check:

2.9 Non-decimated Wavelets 63

> accessD(convert(ywst), level=2)
[1] 0.000000 -4.242641 -1.414214 4.949747 -4.242641
[6] 0.000000 1.414214 3.535534

which gives the same result as applying accessD to ywd, as shown in
Examples 2.5.

Example 2.8. Let us end this series of examples with a more substantial one.
Define the symmetric chirp function by

y(x) = sin(π/x),

for x = ε′ + (−1,−1 + δ,−1 + 2δ, . . . , 1 − 2δ), where ε′ = 10−5 and δ = 1/512
(essentially x is just a vector ranging from −1 to 1 in increments of 1/512.
The ε′ is added so that x is never zero. The length of x is 1024). A plot of
(x, y) is shown in Figure 2.12. The WaveThresh function simchirp can be

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Time

C
hi

rp
 v

al
ue

Fig. 2.12. Simulated chirp signal, see text for definition. Produced by f.wav6().
(Reproduced with permission from Nason and Silverman (1995).)

used to compute this function and returns an (x, y) vector containing values
as follows:

> y <- simchirp()

> ywd <- wd(y$y, filter.number=2, family="DaubExPhase")

> plot(ywd, scaling="by.level", main="")

64 2 Wavelets

These commands also compute the discrete wavelet transform of y using the
Daubechies compactly supported extremal-phase wavelet with two vanishing
moments and then plot the result which is shown in Figure 2.13. The chirp

Standard transform Daub cmpct on ext. phase N=2
Translate

R
es

ol
ut

io
n

Le
ve

l

9
8

7
6

5
4

3
2

1
0

0 128 256 384 512

Fig. 2.13. Discrete wavelet coefficients of simulated chirp signal. Produced by
f.wav7(). (Reproduced with permission from Nason and Silverman (1995).)

nature of the signal can be clearly identified from the wavelet coefficients,
especially at the finer scales. However, as the scales get coarser (small
resolution level) it is difficult to see any oscillation, which is unfortunate as
the chirp contains power at lower frequencies.

The ‘missing’ oscillation turns up in its full glory when one examines a non-
decimated DWT of the simulated chirp signal. This is shown in Figure 2.14,
which was produced using the following code:

> ywd <- wd(y$y, filter.number=2, family="DaubExPhase",
+ type="station")

> plot(ywd, scaling="by.level", main="")

The reason the lower-frequency oscillation appears to be missing in the DWT
is that the transform has been highly decimated at the lower levels (lower
frequencies = coarser scales). In comparing Figure 2.13 with 2.14, one can
see why the non-decimated transform is more useful for time series analysis.
Although the transform is not orthogonal, and the system is redundant,
significant information about the oscillatory behaviour at medium and low
frequencies (coarser scales) is retained. The chirp signal is an example of a

2.9 Non-decimated Wavelets 65

Nondecimated transform Daub cmpct on ext. phase N=2
Translate

R
es

ol
ut

io
n

Le
ve

l

9
8

7
6

5
4

3
2

1
0

0 256 512 768 1024

Fig. 2.14. Time-ordered non-decimated wavelet coefficients of simulated chirp
signal. Produced by f.wav8(). (Reproduced with permission from Nason and
Silverman (1995).)

deterministic time series. However, the NDWT is useful in the modelling and
analysis of stochastic time series as described further in Chapter 5.

Finally, we also compute and plot the packet-ordered NDWT. This is
achieved with the following commands:

> ywst <- wst(y$y, filter.number=2, family="DaubExPhase")

> plot(ywst, scaling="by.level", main="")

The plot is shown in Figure 2.15. The bottom curve in Figure 2.15 is again
just the simulated chirp itself (which can be viewed as finest-scale, data-
scale, scaling function coefficients). At the finest detail scale, level nine, there
are two packets, the even and oddly decimated coefficients respectively. The
packets are separated by a short vertical dotted line. As mentioned above,
if one interlaced the coefficients from each packet one at a time, then one
would recover the scale level nine coefficients from the time-ordered plot in
Figure 2.14. On successively coarser scales the number of packets doubles, but
the number of coefficients per packet halves: overall, the number of coefficients
remains constant at each level.

2.9.4 Final comments on non-decimated wavelets

To conclude this section on non-decimated wavelets, we refer forward to three
sections that take this idea further.

66 2 Wavelets

0 200 400 600 800 1000

Filter: Daub cmpct on ext. phase N=2
Packet Number

R
es

ol
ut

io
n

Le
ve

l

10
9

8
7

6
5

Fig. 2.15. Packet-ordered non-decimated wavelet coefficients of simulated chirp
signal. Produced by f.wav9().

1. Section 2.11 describes a generalization of wavelets, called wavelet packets.
Wavelet packets can also be extended to produce a non-decimated version,
which we describe in Section 2.12.

2. The next chapter explains how the NDWT can be a useful tool for non-
parametric regression problems. Section 3.12.1 explains how ε-decimated
bases can be selected, or how averaging can be carried out over all
ε-decimated bases in an efficient manner to perform nonparametric re-
gression.

3. Chapter 5 describes how non-decimated wavelets can be used for the
modelling and analysis of time series.

Last, we alert the reader to the fact that wavelet transforms computed
with different computer packages can sometimes give different results. With
decimated transforms the results can be different between packages, although
the differences are often minor or trivial and usually due to different wavelet
scalings or reflections (e.g., if ψ(x) is a wavelet, then so is ψ(−x)). However,
with non-decimated transforms the scope for differences increases mainly due
to the number of legitimate, but different, ways in which the coefficients can
be interwoven.

2.10 Multiple Wavelets

Multiple wavelets are bases with more than one mother and father wavelet.
The number of mother wavelets is often denoted by L, and for simplicity of

2.10 Multiple Wavelets 67

exposition we concentrate on L = 2. In this section we base our exposition
on, and borrow notation from, Downie and Silverman (1998), which draws
on work on multiple wavelets by Geronimo et al. (1994), Strang and Strela
(1994), Strang and Strela (1995) and Xia et al. (1996) and Strela et al. (1999).
See Goodman and Lee (1994), Chui and Lian (1996), Rong-Qing et al. (1998)
for further insights and references.

An (orthonormal) multiple wavelet basis admits the following representa-
tion, which is a multiple version of (2.53):

f(x) =
∑

k∈Z

CT
J,kΦJ,k(x) +

J∑

j=1

∑

k∈Z

DT
j,kΨj,k(x), (2.99)

where CJ,k = (cJ,k,1, cJ,k,2)T and Dj,k = (dj,k,1, dj,k,2)T are vector coefficients
of dimension L = 2. Also, Ψj,k(x) = 2j/2Ψ(2jx − k), similarly for ΦJ,k(x),
which is very similar to the usual dilation/translation formula, as for single
wavelets in (2.20).

The quantity Φ(x) is actually a vector function of x given by Φ(x) =
(φ1(x), φ2(x))T and Ψ(x) = (ψ1(x), ψ2(x))T . The basis functions are ortho-
normal, i.e.

∫

ψl(2jx − k)ψl′(2j′
x − k′) dx = δl,l′δj,j′δk,k′ , (2.100)

and the φ1(x) and φ2(x) are orthonormal to all the wavelets ψl(2jx− k). The
vector functions Φ(x) and Ψ(x) satisfy the following dilation equations, which
are similar to the single wavelet ones of (2.47) and (2.51):

Φ(x) =
∑

k∈Z

HkΦ(2x − k), Ψ(x) =
∑

k∈Z

GkΦ(2x − k), (2.101)

where now Hk and Gk are 2 × 2 matrices.
The discrete multiple wavelet transform (DMWT), as described by Xia

et al. (1996), is similar to the discrete wavelet transform given in (2.75) and
(2.76) and can be written as

Cj,k =
√

2
∑

n

HnCj+1,n+2k and Dj,k =
√

2
∑

n

GnCj+1,n+2k, (2.102)

for j = 0, . . . , J − 1. Again, the idea is similar to before: obtain coarser-scale
wavelet and scaling function coefficients from finer scale ones. The inverse
formula is similar to the single wavelet case.

The rationale for multiple wavelet bases as given by Strang and Strela
(1995) is that (i) multiple wavelets can be symmetric, (ii) they can possess
short support, (iii) they can have higher accuracy, and (iv) can be orthogonal.
Strang and Strela (1995) recall Daubechies (1992) to remind us that no single
wavelet can possess these four properties simultaneously.

In most statistical work, the multiple wavelet transform has been proposed
for denoising of univariate signals. However, there is immediately a problem

68 2 Wavelets

with this. The starting (input) coefficients for the DMWT, {CJ,n}, are 2D
vectors. Hence, a way has to be found to transform a univariate input sequence
into a sequence of 2D vectors. Indeed, such ways have been devised and
are called prefilters. More on these issues will be discussed in our section
on multiple wavelet denoising in Section 3.13.

Example 2.9. Let us continue our previous example and compute the multiple
wavelet transform of the chirp signal introduced in Example 2.8. The multiple
wavelet code within WaveThresh was introduced by Downie (1997). The main
functions are: mwd for the forward multiple wavelet transform and mwr for its
inverse. The multiple wavelet transform of the chirp signal can be obtained
by the following commands:

> y <- simchirp()

> ymwd <- mwd(y$y)

> plot(ymwd, cex=cex)

The plot is displayed in Figure 2.16.

2.11 Wavelet Packet Transforms

In Section 2.9 we considered how both odd and even decimation could be
applied at each wavelet transform step to obtain the non-decimated wavelet
transform. However, for both the decimated and non-decimated transforms
the transform cascades by applying filters to the output of a smooth filtering
(H). One might reasonably ask the question: is it possible, and sensible, to
apply both filtering operations (H and G) to the output after a filtering by
either H or G? The answer turns out to be yes, and the resulting coefficients
are wavelet packet coefficients.

Section 2.3 explained that a set of orthogonal wavelets {ψj,k(x)}j,k was
a basis for the space of functions L2(R). However, it is not the only possible
basis. Other bases for such function spaces are orthogonal polynomials and
the Fourier basis. Indeed, there are many such bases, and it is possible to
organize some of them into collections called basis libraries. One such library
is the wavelet packet library, which we will describe below and is described
in detail by Wickerhauser (1994), see also Coifman and Wickerhauser (1992)
and Hess–Nielsen and Wickerhauser (1996). Other basis libraries include the
local cosine basis library, see Bernardini and Kovačević (1996), and the SLEX
library which is useful for time series analyses, see Ombao et al. (2001), Ombao
et al. (2002, 2005).

Following the description in Coifman and Wickerhauser (1992) we start
from a Daubechies mother and father wavelet, ψ and φ, respectively. Let
W0(x) = φ(x) and W1(x) = ψ(x). Then define the sequence of functions
{Wk(x)}∞k=0 by

2.11 Wavelet Packet Transforms 69

Wavelet Decomposition Coefficients

Geronimo Multiwavelets
Translate

R
es

ol
ut

io
n

le
ve

l

0 128 256 384 512

8
7

6
5

4
3

2
1

Fig. 2.16. Multiple wavelet transform coefficients of chirp signal. At each time-scale
location there are two coefficients: one for each of the wavelets at that location. In
WaveThresh on a colour display the two different sets of coefficients can be plotted in
different colours. Here, as different line styles, so some coefficients are dashed, some
are solid. Produced by f.wav10().

W2n(x) =
√

2
∑

k

hkWn(2x − k),

W2n+1(x) =
√

2
∑

k

gkWn(2x − k). (2.103)

This definition fulfils the description given above in that both hk and gk are
applied to W0 = φ and both to W1 = ψ and then both hk and gk are applied
to the results of these. Coifman and Wickerhauser (1992) define the library
of wavelet packet bases to be the collection of orthonormal bases comprised
of (dilated and translated versions of Wn) functions of the form Wn(2jx− k),
where j, k ∈ Z and n ∈ N. Here j and k are the scale and translation numbers
respectively and n is a new kind of parameter called the number of oscillations.
Hence, they conclude that Wn(2j − k) should be (approximately) centred at
2jk, have support size proportional to 2−j and oscillate approximately n times.
To form an orthonormal basis they cite the following proposition.

Proposition 1 (Coifman and Wickerhauser (1992)) Any collection of
indices (j, n, k) ⊂ N × N × Z, such that the intervals [2jn, 2j(n + 1)) form
a disjoint cover of [0,∞) and k ranges over all the integers, corresponds to
an orthonormal basis of L2(R).

70 2 Wavelets

In other words, wavelet packets at different scales but identical locations (or
covering locations) cannot be part of the same basis.

The definition of wavelet packets in (2.103) shows how coefficients/basis
functions are obtained by repeated application of both the H and G filters
to the original data. This operation is depicted by Figure 2.17. Figure 2.18

c c c c c c c c

c c c c 2

3

1

0

Level

c c

c d

d d

d d d d

0 1 2 3

0 D0D H G

Fig. 2.17. Illustration of wavelet packet transform applied to eight data points
(bottom to top). The D0H, D0G filters carry out the smooth and detail operations as
in the regular wavelet transform. The difference is that both are applied recursively
to the original data with input at the bottom of the picture. The regular wavelet
coefficients are labelled ‘d’ and the regular scaling function coefficients are labelled
‘c’. The arrows at the top of the figure indicate which filter is which. Reproduced
with permission from Nason and Sapatinas (2002).

shows examples of four wavelet packet functions.

2.11.1 Best-basis algorithms

This section addresses how we might use a library of bases. In Section 2.9.2
we described the set of non-decimated wavelets and how that formed an
overdetermined set of functions from which different bases (the ε-decimated
basis) could be selected or, in a regression procedure, representations with
respect to many basis elements could be averaged over, see Section 3.12.1.
Hence, the non-decimated wavelets are also a basis library and usage usually
depends on selecting a basis element or averaging over the results of many.

For wavelet packets, selection is the predominant mode of operation.
Basis averaging could be considered but has received little attention in the

2.11 Wavelet Packet Transforms 71

x

W
av

el
et

 p
ac

ke
t v

al
ue

0.0 0.2 0.4 0.6 0.8 1.0

-4

-2

0

2

4

x

W
av

el
et

 p
ac

ke
t v

al
ue

0.0 0.2 0.4 0.6 0.8 1.0

-4

-2

0

2

4

x

W
av

el
et

 p
ac

ke
t v

al
ue

0.0 0.2 0.4 0.6 0.8 1.0

-4

-2

0

2

4

x

W
av

el
et

 p
ac

ke
t v

al
ue

0.0 0.2 0.4 0.6 0.8 1.0

-4

-2

0

2

4

Fig. 2.18. Four wavelet packets derived from Daubechies (1988) least-asymmetric
mother wavelet with ten vanishing moments. These four wavelet packets are actually
orthogonal and drawn by the drawwp.default() function in WaveThresh. The
vertical scale is exaggerated by ten times. Reproduced with permission from Nason
and Sapatinas (2002).

literature. So, for statistical purposes how does selection work? In principle,
it is simple for nonparametric regression. One selects a particular wavelet
packet basis, obtains a representation of the noisy data with respect to that,
thresholds (reduce noise, see Chapter 3), and then inverts the packet transform
with respect to that basis. This task can be carried out rapidly using fast
algorithms.

However, the whole set of wavelet packet coefficients can be computed
rapidly in only O(N log N) operations. Hence, an interesting question arises:
is it better to select a basis first and then threshold, or is it best to threshold
and then select a basis? Again, not much attention has been paid to this
problem. For an example of basis selection followed by denoising see Ghugre
et al. (2003). However, if the denoising can be done well on all wavelet
packet coefficients simultaneously, then it might be better to denoise first
and then perform basis selection. The reason for this is that many basis
selection techniques are based on the Coifman and Wickerhauser (1992) best-
basis algorithm, which is a method that was originally designed to work on
deterministic functions. Of course, if the denoising is not good, then the basis
selection might not work anyhow. We say a little more on denoising with
wavelet packets in Section 3.16.

72 2 Wavelets

Coifman–Wickerhauser best-basis method. A possible motivation for the
best-basis method is signal compression. That is, can a basis be found that
gives the most efficient representation of a signal? Here efficient can roughly
be translated into ‘most sparse’. A vector of coefficients is said to be sparse
if most of its entries are zero, and only a few are non-zero. The Shannon
entropy is suggested as a measure of sparsity. Given a set of basis coefficients
{vi}, the Shannon entropy can be written as −

∑
|vi|2 log |vi|2. For example,

the WaveThresh function Shannon.entropy computes the Shannon entropy.
Suppose we apply it to two vectors: v(1) = (0, 0, 1) and v(2) = (1, 1, 1)/

√
3.

Both these vectors have unit norm.

> v1 <- c(0,0,1)
> Shannon.entropy(v1)
[1] 0

> v2 <- rep(1/sqrt(3), 3)
> Shannon.entropy(v2)
[1] 1.098612

(technically Shannon.entropy computes the negative Shannon entropy). These
computations suggest that the Shannon entropy is minimized by sparse vec-
tors. Indeed, it can be proved that the ‘most-non-sparse’ vector v(2) max-
imizes the Shannon entropy. (Here is a proof for a very simple case. The
Shannon entropy is more usually computed on probabilities. Suppose we have
two probabilities p1, p2 and p1 + p2 = 1 and the (positive) Shannon en-
tropy is Se({pi}) =

∑
i pi log pi = p1 log p1 + (1 − p1) log(1 − p1). Let us

find the stationary points: ∂Se/∂p1 = log p1 − log(1 − p1) = 0, which implies
log{p1/(1 − p1)} = 0, which implies p1 = p2 = 1/2, which is the least-sparse
vector. Differentiating Se again verifies a minimum. For the negative Shannon
entropy it is a maximum. The proof for general dimensionality {pi}n

i=1 is not
much more difficult.)

To summarize, the Shannon entropy can be used to measure the sparsity
of a vector, and the Coifman–Wickerhauser algorithm searches for the basis
that minimizes the overall negative Shannon entropy (actually Coifman and
Wickerhauser (1992) is more general than this and admits more general cost
functions). Coifman and Wickerhauser (1992) show that the best basis can be
obtained by starting from the finest-scale functions and comparing the entropy
of that representation by the next coarsest scale packets, and then selecting
the one that minimizes the entropy (either the packet or the combination of
the two children). Then this operation is applied recursively if required.

2.11.2 WaveThresh example

The wavelet packet transform is implemented in WaveThresh by the wp
function. It takes a dyadic-length vector to transform and requires the
filter.number and family arguments to specify the underlying wavelet

2.11 Wavelet Packet Transforms 73

family and number of vanishing moments. For example, suppose we wished
to compute the wavelet packet transform of a vector of iid Gaussian random
variables. This can be achieved by

> z <- rnorm(256)

> zwp <- wp(z, filter.number=2, family="DaubExPhase")

> plot(zwp, color.force=TRUE)

This produces the wavelet packet plot shown in Figure 2.19. Let us now replace

0 50 100 150 200 250

Wavelet Packet Decomposition

Filter: Daub cmpct on ext. phase N=2
Packet Number

R
es

ol
ut

io
n

Le
ve

l

8
7

6
5

Fig. 2.19. Wavelet packet coefficients of the independent Gaussian sequence z. The
time series at the bottom of the plot, scale eight, depicts the original data, z. At
scales seven through five different wavelet packets are separated by vertical dotted
lines. The first packet at each scale corresponds to scaling function coefficients, and
these have been plotted as a time series rather than a set of small vertical lines (as
in previous plots of coefficients). This is because the scaling function coefficients can
be thought of as a successive coarsening of the original series and hence are a kind of
smooth of the original. The regular wavelet coefficients are always the second packet
at each scale. The default plot arguments in plot.wp only plot up to scale five and
no lower. Produced by f.wav11().

one of the packets in this basis by a very sparse packet. We shall replace the
fourth packet (packet 3) at scale six by a packet consisting of all zeroes and
a single value of 100. We can investigate the current values of packet (6, 3)

74 2 Wavelets

(index packet 3 is the fourth at scale six, the others are indexed 0, 1, 2) by
again using the generic getpacket function:

> getpacket(zwp, level=6, index=3)
[1] -1.004520984 2.300091601 -0.765667778 0.614727692
[5] 2.257342407 0.816656404 0.017121135 -0.353660951
[9] 0.959106692 1.227197543 ...
...
[57] 0.183307351 -0.435437120 0.373848181 -0.565281279
[60]-0.746125550 1.118635271 0.773617722 -1.888108807
[64]-0.182469097

So, a vector consisting of a single 100 and all others equal to zero is very
sparse. Let us create a new wavelet packet object, zwp2, which is identical to
zwp in all respects except it contains the new sparse packet:

> zwp2 <- putpacket(zwp, level=6, index=3,
+ packet=c(rep(0,10), 100, rep(0,53)))

> plot(zwp2)

This last plot command produces the wavelet packet plot as shown in
Figure 2.20. To apply the Coifman–Wickerhauser best-basis algorithm using
Shannon entropy we use the MaNoVe function (which stands for ‘make node
vector’, i.e. select a basis of packet nodes). We can then examine the basis
selected merely by typing the name of the node vector:

> zwp2.nv <- MaNoVe(zwp2)

> zwp2.nv
Level: 6 Packet: 3
Level: 3 Packet: 5
Level: 3 Packet: 11
Level: 2 Packet: 5
Level: 2 Packet: 12
...

As can be seen, (6, 3) was selected as a basis element—not surprisingly as
it is extremely sparse. The representation can be inverted with respect to
the new selected basis contained within zwp2.nv by calling InvBasis(zwp2,
zwp2.nv). If the inversion is plotted, one sees a very large spike near the
beginning of the series. This is the consequence of the ‘super-sparse’ (6, 3)
packet.

More information on the usage of wavelet packets in statistical problems
in regression and time series can be found in Sections 3.16 and 5.5.

2.12 Non-decimated Wavelet Packet Transforms 75

0 50 100 150 200 250

Wavelet Packet Decomposition

Filter: Daub cmpct on ext. phase N=2
Packet Number

R
es

ol
ut

io
n

Le
ve

l

8
7

6
5

Fig. 2.20. Wavelet packet coefficients of zwp2. Apart from packet (6, 3), these
coefficients are identical to those in Figure 2.19. However, since the plotted coefficient
sizes are relative, the duplicated coefficients have been plotted much smaller than
those in Figure 2.19 because of the large relative size of the 100 coefficient in the
fourth packet at level 6 (which stands out as the tenth coefficient after the start of
the fourth packet indicated by the vertical dotted line.) Produced by f.wav12().

2.12 Non-decimated Wavelet Packet Transforms

The discrete wavelet transform relied on even dyadic decimation, D0, and the
smoothing and detail filters, H and G, but iterating on the results of the H
filter only. One generalization of the wavelet transform, the non-decimated
transform, pointed out that the odd dyadic decimation operator, D1, was
perfectly valid and both could be used at each step of the wavelet transform.

In the previous section another generalization, the wavelet packet trans-
form, showed that iteration of both H and G could be applied to the results
of both of the previous filters, not just H.

These two generalizations can themselves be combined by recursively
applying the four operators D0H, D0G, D1H, and D1G. Although this may
sound complicated, the result is that we obtain wavelet packets that are non-
decimated. Just as non-decimated wavelets are useful for time series analysis,
so are non-decimated wavelet packets. See Section 5.6 for further information.

76 2 Wavelets

2.13 Multivariate Wavelet Transforms

The extension of wavelet methods to 2D regularly spaced data (images) and to
such data in higher dimensions was proposed by Mallat (1989b). A simplified
explanation appears in Nason and Silverman (1994). Suppose one has an n×n
matrix x where n is dyadic. In its simplest form one applies both the D0H
and D0G operators from (2.79) to the rows of the matrix. This results in
two n × (n/2) matrices, which we will call H and G. Then both operators
are again applied but to both the columns of H and G. This results in four
matrices HH, GH, HG, and GG each of dimension (n/2)×(n/2). The matrix
HH is the result of applying the ‘averaging’ operator D0H to both rows
and columns of x, and this is the set of scaling function coefficients with
respect to the 2D scaling function Φ(x, y) = Φ(x)Φ(y). The other matrices
GH, HG, and GG create finest-scale wavelet detail in the horizontal, vertical,
and ‘diagonal’ directions. This algorithmic step is then repeated by applying
the same filtering operations to HH, which generates a new HH, GH, HG,
and GG at the next finest scale and then the step is repeated by application
to the new HH, and so on (exactly the same as the recursive application of
D0H to the c vectors in the 1D transform). The basic algorithmic step for the
2D separable transform is depicted in Figure 2.21.

The transform we have described here is an example of a separable
wavelet transform because the 2D scaling function Φ(x, y) can be separated
into the product of two 1D scaling functions φ(x)φ(y). The same happens
with the wavelets except there are three of them encoding the horizontal,
vertical, and diagonal detail ΨH(x, y) = ψ(x)φ(y), ΨV (x, y) = φ(x)ψ(y), and
ΨD(x, y) = ψ(x)ψ(y). For a more detailed description see Mallat (1998). For
nonseparable wavelets see Kovačević and Vetterli (1992) or Li (2005) for a
more recent construction and further references.

The 2D transform of an image is shown in Figure 2.22, and the layout of
the coefficients is shown in Figure 2.23. The coefficient image was produced
with the following commands in WaveThresh:

#
Enable access to teddy image
#
> data(teddy)
#
Setup grey scale for image colors
#
> greycol <- grey((0:255)/255)
#
Compute wavelet coefficients of teddy image
#
> teddyimwd <- imwd(teddy, filter.number=10)
#
Compute scaling for coefficient display

2.13 Multivariate Wavelet Transforms 77

convolve with filter X

keep one row out of two

keep one column out of two

2

1

1

2

X

columns

rows

21

21

21

21

12

12

H

G

H

G

H

G

j
C

D

D

D

C

3,j-1

2,j-1

1,j-1

j-1

Fig. 2.21. Schematic diagram of the central step of the 2D discrete wavelet
transform. The input image on the left is at level j and the outputs are the smoothed
image Cj−1 plus horizontal, vertical, and diagonal detail D1, D2, and D3. The
smoothed image Cj−1 is fed into an identical step at the next coarsest resolution
level. Here 2 ↓ 1 and 1 ↓ 2 denote dyadic decimation D0 in the horizontal and
vertical directions. (After Mallat (1989b)).

(just a suggestion)
#
> myt <- function(x) 20+sqrt(x)
#
Display image of Teddy
#
> plot(teddyimwd, col=greycol, transform=TRUE, tfunction=myt)

In both Figures 2.22 and 2.23, the top left block corresponds to the finest detail
in the vertical direction, the top right block corresponds to the finest detail in
the diagonal direction, and the bottom right block to the horizontal detail
(i.e. the GH, GG, and HG coefficients produced by the algorithm mentioned
above). These three blocks form an inverted ‘L’ of coefficients at the finest

78 2 Wavelets

resolution. The next step of the algorithm produces a similar set of coefficients
at the second finest resolution according to the same layout, and so on.

Fig. 2.22. Wavelet coefficients of teddy image shown in Figure 4.6 on p. 142.
Produced by f.wav15(). (After Mallat (1989b)).

Within WaveThresh, the 1D DWT is carried out using the wd and wr
functions, the 2D DWT using the imwd and imwr functions, and the 3D DWT
using the wd3D and wr3D functions. Both wd and imwd can perform the time-
ordered non-decimated transform, and wst and wst2D can perform 2D packet-
ordered non-decimated transforms.

2.14 Other Topics

The continuous wavelet transform. We have first presented the story of
wavelets as a method to extract multiscale information from a sequence, then
explained how a set of functions called Haar wavelets can be used to provide
a theoretical underpinning to this extraction. Then we demonstrated that the
idea could be generalized to wavelets that are smoother than Haar wavelets
and, for some applications, more useful. In many mathematical presentations,
e.g. Daubechies (1992) (whose development we will follow here), the starting
point is the continuous wavelet transform, CWT. Here the starting point is a
function f ∈ L2(R) whose CWT is given by

2.14 Other Topics 79

S

0V 0D

0H

1V 1D

1H

Vertical
Level 2

Diagonal
Level 2

Horizontal
Level 2

Coefficients
Vertical
Level 3

Coefficients

Level 3
Diagonal

Coefficients

Level 3
Horizontal

Fig. 2.23. Diagram showing general layout of wavelet coefficients as depicted in
Figure 2.22. The plan here stops at the fourth iteration (level 0) whereas the one in
Figure 2.22 is the result of nine iterations. (After Mallat (1989b)).

F (a, b) =
∫ ∞

−∞
f(x)ψa,b(x) dx, (2.104)

for a, b ∈ R, a �= 0, where

ψa,b(x) = |a|−1/2ψ

(
x − b

a

)

, (2.105)

where ψ ∈ L2(R) satisfies a technical admissibility condition which Daubechies
(1992) notes “for all practical purposes, [the admissibility condition] is equiva-
lent to the requirement that

∫
ψ(x) dx = 0”. The function f can be recovered

from its CWT, F (a, b). There are many accounts of the CWT; see, for ex-
ample, Heil and Walnut (1989), Daubechies (1992), Meyer (1993b), Jawerth
and Sweldens (1994), Vidakovic (1999a), and Mallat (1998), to name but a
few. As for the DWT above there are many wavelets that can be used for
ψ(x) here, for example, the Haar, the Shannon from Section 2.6.1, and the
so-called ‘Mexican-hat’ wavelet which is the second derivative of the normal
probability density function.

Antoniadis and Gijbels (2002) note that in practical applications the CWT
is usually computed on a discrete grid of points, and one of the most popular,
but by no means the only, discretizations is to set a = 2j and b = k. Antoniadis
and Gijbels (2002) refer to this as the continuous discrete wavelet transform
(CDWT) and mention a fast computational algorithm by Abry (1994) which

80 2 Wavelets

is equivalent to the non-decimated wavelet transform from Section 2.9. The
CWT can be discretized to a = 2j and b = k2j to obtain the DWT. In this
context the CDWT is often used for jump or singularity detection, such as in
Mallat and Hwang (1992) and Antoniadis and Gijbels (2002) and references
therein. Torrence and Compo (1998) is an extremely well-written and engaging
description of the use of the CWT for the analysis of meteorological time series
such as the El Niño Southern Oscillation.

Lifting is a technique that permits the multiscale method to be applied
to more general data situations. The wavelet transforms we have described
above are limited to data that occur regularly spaced on a grid, and for
computational convenience and speed we have also assumed that n = 2J

(although this latter restriction can often be circumvented by clever algorithm
modification). What about data that are not regularly spaced? Most regression
methods, parametric and nonparametric, can be directly applied to irregularly
spaced data, so what about wavelet methods? Many papers have been written
that are devoted to enabling wavelets in the irregular case. This body of work
is reviewed in Section 4.5 along with an example of use for one of them.
Generally, many of them work by ‘transforming’ the irregular data, in some
way, so as to fit the regular wavelet transform. Lifting is somewhat different
as it can cope directly with the irregular data.

As with wavelets we introduce lifting by reexamining the Haar wavelet
transform but presented ‘lifting style’. Suppose we begin with two data points
(or scaling function coefficients at some scale), c1 and c2. The usual way of
presenting the Haar transform is with equations such as (2.42). However, we
could achieve the same result by first carrying the following operation:

c1 ← (c1 − c2)/
√

2. (2.106)

Here ← is used instead of = to denote that the result of the calculation on
the right-hand side of the equation is assigned and overwrites the existing
location c1. Then taking this new value of c1 we can form

c2 ←
√

2c2 + c1. (2.107)

In lifting, Equation (2.106) is known as the predict step and (2.107) is known
as the update step. The steps can be chained similarly to the Haar transform to
produce the full transform. The beauty of lifting is its simplicity. For example,
the inverse transformation merely reverses the steps by undoing (2.107) and
then undoing (2.106). Many other existing wavelet transforms can be ‘put
in lifting form’. The lifting scheme was introduced by Wim Sweldens, see
Sweldens (1996, 1997) for example.

A major benefit of lifting is that the idea can be extended to a wider range
of data set-ups than described earlier in this book. For example, for irregular
data, in several dimensions, it is possible to obtain the detail, or ‘wavelet’
coefficient, for a point in the following way. First, identify the neighbours
of such a point and then, using some method, e.g., linear regression on the

2.14 Other Topics 81

neighbours, work out the fitted value of the point. Then the detail is just
the fitted value minus the observed value. These multiresolution analyses for
irregular data can be used for nonparametric regression purposes but are
beyond the scope of the present text. See Jansen et al. (2001), Claypoole
et al. (2003), Delouille et al. (2004a,b), Nunes et al. (2006), and the book by
Jansen and Oonincx (2005) for further information on lifting in statistics.

http://www.springer.com/978-0-387-75960-9

