
Nonlinear Regression and Nonlinear Least Squares in R

An Appendix to An R Companion to Applied Regression, second edition

John Fox & Sanford Weisberg

last revision: 13 December 2010

Abstract

The nonlinear regression model generalizes the linear regression model by allowing for mean
functions like E(y∣x) = �1/ {1 + exp[−(�2 + �3x)]}, in which the parameters, the �s in this
example, enter the mean function nonlinearly. If we assume additive errors, then the parameters
in models like this one are often estimated via least squares. In this appendix to Fox and
Weisberg (2011) we describe how the nls function in R can be used to obtain estimates, and
briefly discuss some of the major issues with nonlinear least squares estimation.

The nonlinear regression model is a generalization of the linear regression model in which the
conditional mean of the response variable is not a linear function of the parameters. As a simple
example, the data frame USPop in the car package has decennial U. S. Census population for the
United States (in millions), from 1790 through 2000. The data are shown in Figure 1a:1

> library(car)

> plot(population ˜ year, data=USPop, main="(a)")

> abline(lm(population ˜ year, data=USPop))

The simple linear regression least-squares line shown on the graph clearly does not match these
data: The U. S. population is not growing by the same rate in each decade, as is required by
the straight-line model. While in some problems transformation of predictors or the response
can change a nonlinear relationship into a linear one (in these data, replacing population by its
cube-root linearizes the plot, as can be discovered using the powerTransform function in the car
package), in many instances modeling the nonlinear pattern with a nonlinear mean function is
desirable.

A common simple model for population growth is the logistic growth model,

y = m(x,�) + "

=
�1

1 + exp[−(�2 + �3x)]
+ " (1)

where y is the response, the population size, and we will take the predictor x = year. We introduce
the notation m(x,�) for the mean function, which depends on a possibly vector-valued parameter
� and a possibly vector-valued predictor x, here the single predictor x. We assume the predictor x
consists of fixed, known values.

1The plot and abline functions and other R functions used but not described in this appendix are dis-
cussed in Fox and Weisberg (2011). All the R code used in this appendix can be downloaded in the file
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/Appendix-Nonlinear-Regression.R. Alternatively,
if you are running R and attached to the Internet, load the car package and enter the command carWeb("Appendix-

Nonlinear-Regression.R") to view the R command file for the appendix in your browser.

1

● ● ● ● ● ●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

1800 1850 1900 1950 2000

0
50

10
0

15
0

20
0

25
0

(a)

year

po
pu

la
tio

n

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

x

1/
(1

 +
 e

xp
(−

(−
1

+
 1

 *
 x

))
)

Figure 1: (a) U. S. population, from the U. S. Census, and (b) a generic logistic growth curve.

As a function of x, the mean function in Equation 1 is a curve, as shown in Figure 1b for the
special case of �1 = 1, �2 = 1, �3 = 1:

> curve(1/(1+exp(-(-1 + 1*x))), from=-5, to=5, main="(b)")

> abline(h=1/2, lty=2)

> abline(v=1, lty=2)

Changing the values of the parameters theta = (�1, �2, �3)
′ stretches or shrinks the axes, and

changes the rate at which the curve varies from its lower value at 0 to its maximum value. If
�3 > 0, then as x gets larger the term exp[−(�2 + �3x)] gets closer to 0, and so m(x,�) will
approach the value �1 as an asymptote. Assuming logistic population growth therefore imposes a
limit to population size. Similarly, again if �3 > 0, as x → −∞, the term exp[−(�2 + �3x)] grows
large without bound and so the mean will approach 0. Interpreting the meaning of �2 and �3 is
more difficult. The logistic growth curve is symmetric about the value of x for which m(x,�) is
midway between 0 and �1. It is not hard to show that m(x = −�2/�3,�) = �1/2, and so the
curve is symmetric about the midpoint x = −�2/�3. The parameter �3 controls how quickly the
curve transitions from the lower asymptote of 0 to the upper asymptote at �1, and is therefore a
growth-rate parameter.

It is not obvious that a curve of the shape in Figure 1b can match the data shown in Figure 1a,
but a part of the curve, from about x = −3 to x = 2, may be able to fit the data fairly well. Fitting
the curve corresponds to estimating parameters to get a logistic growth function that matches the
data. Determining whether extrapolation of the curve outside this range makes sense is beyond the
scope of this brief report.

1 Fitting Nonlinear Regressions with the nls Function

The R function nls is used for estimating parameters via nonlinear least squares. Following Weis-
berg (2005, Chap. 11), the general nonlinear regression model is

y = E(y∣x) + " = m(x,�) + "

2

This model posits that the mean E(y∣x) depends on x through the kernel mean function m(x,�),
where the predictor x has one or more components and the parameter vector � also has one or
more components. In the logistic growth example in Equation 1, x consists of the single predictor
x = year and the parameter vector � = (�1, �2, �3)

′ has three components. The model further
assumes that the errors " are independent with variance �2/w, where the w are known nonnegative
weights, and �2 is a generally unknown variance to be estimated.2 In most applications w = 1 for
all observations.

The nls function can be used to estimate � as the values that minimize the residual sum of
squares,

S(�) =
∑

w [y −m(�,x)]2 (2)

We will write �̂ for the minimizer of the residual sum of squares.
Unlike the linear least-squares problem, there is usually no formula that provides the minimizer

of Equation 2. Rather an iterative procedure is used, which in broad outline is as follows:

1. The user supplies an initial guess, say t0 of starting values for the parameters. Whether or
not the algorithm can successfully find a minimizer will depend on getting starting values
that are reasonably close to the solution. We discuss how this might be done for the logistic
growth function below. For some special mean functions, including logistic growth, R has
self-starting functions that can avoid this step.

2. At iteration j ≥ 1, the current guess tj is obtained by updating tj−1. If S(tj) is smaller than
S(tt−1) by at least a predetermined amount, then the counter j is increased by 1 and this
step is repeated. If no such improvement is possible, then tj−1 is taken as the estimator.

This simple algorithm hides at least three important considerations. First, we want a method that
will guarantee that at each step we either get a smaller value of S or at least S will not increase.
There are many nonlinear least-squares algorithms; see, for example, Bates and Watts (1988).
Many algorithms make use of the derivatives of the mean function with respect to the parameters.
The default algorithm in nls uses a form of Gauss-Newton iteration that employs derivatives
approximated numerically unless we provide functions to compute the derivatives. Second, the
sum of squares function S may be a perverse function with multiple minima. As a consequence,
the purported least-squares estimates could be a local rather than global minimizer of S. Third, as
given the algorithm can go on forever if improvements to S are small at each step. As a practical
matter, therefore, there is an iteration limit that gives the maximum number of iterations permitted,
and a tolerance that defines the minimum improvement that will be considered to be greater than
0.

The call to nls is similar to the call to lm for linear models. Here are the arguments:

> args(nls)

function (formula, data = parent.frame(), start, control = nls.control(),

algorithm = c("default", "plinear", "port"), trace = FALSE,

subset, weights, na.action, model = FALSE, lower = -Inf,

upper = Inf, ...)

NULL

We discuss each of these arguments in turn.

2The assumption of independent errors is often untenable for time-series data such as the U. S. population data,
where errors may be substantially autocorrelated. See the appendix on time-series regression.

3

formula The formula argument is used to tell nls about the mean function. The formula equiv-
alent to Equation 1 (page 1) is

population ˜ theta1/(1 + exp(-(theta2 + theta3*year)))

As in lm, the left side of the formula specifies the response variable, and is followed by the tilde
(˜) as a separator that is commonly read as “is regressed on” or “is modeled by.” The right
side of the formula for nonlinear models is very different from lm models. In the simplest from
for nls, the right side is a mathematical expression consisting of constants, like the number
1; predictors, in this case just year; named parameters like theta1, theta2 and theta3; and
mathematical operators like exp for exponentiation, / for division and + for addition. Factors,
interactions, and in general the Wilkinson-Rogers notation employed for linear models, are
not used with nls. Parentheses are used with the usual precedence rules for mathematics,
but square brackets “[]” and curly braces “{}” cannot be used. If values of the parameters
and predictors were specified, then the right side of the formula would evaluate to a number;
see Fox and Weisberg (2011, Sec. 1.1.5). We can name the parameters with any legal R name,
such as theta1, alpha, t1 or Asymptote.

The formula for nls can take several other forms beyond the sample form described here.
We will use a few other forms in later sections of this appendix, but even so we won’t describe
this argument in full generality.

start The argument start is a list that tells nls which of the named quantities on the right side of
the formula are parameters, and thus implicitly which are predictors. It also provides starting
values for the parameter estimates. For the example, start=list(theta1=440, theta2=

-4, theta3=0.2) names the thetas as the parameters and also specifies starting values for
them. Because no starting value is given for year, it is by default taken by nls to be a
predictor. The start argument is required unless we are using a self-starting function in the
formula argument.

algorithm = "default" The "default" algorithm used in nls is a Gauss-Newton algorithm.
Other possible values are "plinear" for the Golub-Pereyra algorithm for partially linear
models and "port" for a algorithm that should be selected if there are constraints on the
parameters (see the next argument). The help page for nls gives references.

lower = -Inf, upper = Inf One of the characteristics of nonlinear models is that the parameters
of the model might be constrained to lie in a certain region. In the logistic population-growth
model, for example, we must have �3 > 0, as population size is increasing, and we must
also have �1 > 0. In some problems we would like to be certain that the algorithm never
considers values for � outside the feasible range. The arguments lower and upper are vectors
of lower and upper bounds, replicated to be as long as start. If unspecified, all parameters
are assumed to be unconstrained. Bounds can only be used with the "port" algorithm. They
are ignored, with a warning, if given for other algorithms.

control = nls.control() This argument takes a list of values that modify the criteria used in
the computing algorithm:

> args(nls.control)

function (maxiter = 50, tol = 1e-05, minFactor = 1/1024, printEval = FALSE,

warnOnly = FALSE)

NULL

4

Users will generally be concerned with this argument only if convergence problems are encoun-
tered. For example, to change the maximum number of iterations to 40 and the convergence
tolerance to 10−6, set control=nls.control(maxiter=40, tol=1e-6).

trace = FALSE If TRUE, print the value of the residual sum of squares and the parameter estimates
at each iteration. The default is FALSE.

data, subset, weights, na.action These arguments are the same as for lm, with data, subset,
and na.action specifying the data to which the model is to be fit, and weights giving the
weights w to be used for the least-squares fit. If the argument weights is missing then all
weights are set equal to 1.

2 Starting Values

Unlike in linear least squares, most nonlinear least-squares algorithms require specification of start-
ing values for the parameters, which are �1, �2 and �3 for the logistic growth model of Equation 1
(page 1).3 For the logistic growth model we can write

y ≈ �1
1 + exp[−(�2 + �3x)]

y/�1 ≈ 1

1 + exp[−(�2 + �3x)]

log

[
y/�1

1− y/�1

]
≈ �2 + �3x

The first of these three equations is the original logistic growth function. In the second equation,
we divide through by the asymptote �1, so the left side is now a positive number between 0 and 1.
We then apply the logit transformation, as in binomial regression with a logit link, to get a linear
model. Consequently, if we have a starting value t1 for �1 we can compute starting values for the
other �s by the OLS linear regression of the logit of y/t1 on x.

A starting value of the asymptote �1 is some value larger than any value in the data, and so a
value of around t1 = 400 is a reasonable start. (The estimated population in 2010 before the official
Census count was released is 307 million.) Using lm and the logit function from the car package,
we compute starting values for the other two parameters:

> lm(logit(population/400) ˜ year, USPop)

Call:

lm(formula = logit(population/400) ˜ year, data = USPop)

Coefficients:

(Intercept) year

-49.2499 0.0251

Thus, starting values for the other �s are t2 = −49 and t3 = 0.025.

> pop.mod <- nls(population ˜ theta1/(1 + exp(-(theta2 + theta3*year))),

+ start=list(theta1 = 400, theta2 = -49, theta3 = 0.025),

+ data=USPop, trace=TRUE)

3Generalized linear models use a similar iterative estimation method, but finding starting values is usually not
important because a set of default starting values is almost always adequate.

5

3061 : 400.000 -49.000 0.025

558.5 : 426.06199 -42.30786 0.02142

458 : 438.41472 -42.83690 0.02168

457.8 : 440.8903 -42.6987 0.0216

457.8 : 440.81681 -42.70805 0.02161

457.8 : 440.83445 -42.70688 0.02161

457.8 : 440.83333 -42.70698 0.02161

By setting trace=TRUE, we can see that S evaluated at the starting values is 3061. The first
iteration reduces this to 558.5, the next iteration to 458, and the remaining iterations result in only
very small changes. We get convergence in 6 iterations.

As in lm, we use the summary function to print a report for the fitted model:

> summary(pop.mod)

Formula: population ˜ theta1/(1 + exp(-(theta2 + theta3 * year)))

Parameters:

Estimate Std. Error t value Pr(>|t|)

theta1 440.83333 35.00014 12.6 1.1e-10

theta2 -42.70698 1.83914 -23.2 2.1e-15

theta3 0.02161 0.00101 21.4 8.9e-15

Residual standard error: 4.91 on 19 degrees of freedom

Number of iterations to convergence: 6

Achieved convergence tolerance: 1.48e-06

The column marked Estimates displays the least squares estimates. The estimated upper bound
for the U. S. population is 440.8, or about 441 million. The column marked Std. Error displays
the estimated standard errors of these estimates. The very large standard error for the asymptote
reflects the uncertainty in the estimated asymptote when all the observed data is much smaller
than the asymptote. The estimated year in which the population is half the asymptote is −�̂3/�̂2 =
1976.6. The standard error of this estimate can be computed with the deltaMethod function in
the car package:

> deltaMethod(pop.mod, "-theta2/theta3")

Estimate SE

-theta2/theta3 1977 7.556

and so the standard error is about 7.6 years.
The column t value in the summary output shows the ratio of each parameter estimate to its

standard error. In sufficiently large samples, this ratio will generally have a normal distribution, but
interpreting “sufficiently large” is difficult with nonlinear models. Even if the errors " are normally
distributed, the estimates may be far from normally distributed in small samples. The p-values
shown are based on asymptotic normality. The residual standard deviation is the estimate of �,

�̂ =

√
S(�̂)/(n− k)

6

● ● ● ● ● ● ●
● ●

●
●

●
●

●
●

●
●

●

●

●

●

●

1800 1850 1900 1950 2000 2050 2100

0
10

0
20

0
30

0
40

0

year

po
pu

la
tio

n

x

Figure 2: U. S. population, with logistic growth fit extrapolated to 2100. The circles represent
observed Census population counts, while“x”represents the estimated 2010 population. The broken
horizontal lines are drawn at the asymptotes and midway between the asymptotes; the broken
vertical line is drawn at the year corresponding to the mid-way point.

where k is the number of parameters in the mean function, 3 in this example.
Many familiar generic functions, such as residuals, have methods for the nonlinear-model

objects produced by nls. For example, the predict function makes it simple to plot the fit of the
model as in Figure 2:

> plot(population ˜ year, USPop, xlim=c(1790, 2100), ylim=c(0,450))

> with(USPop, lines(seq(1790, 2100, by=10),

+ predict(pop.mod, data.frame(year=seq(1790, 2100, by=10))), lwd=2))

> points(2010, 307, pch="x", cex=1.3)

> abline(h=0, lty=2)

> abline(h=coef(pop.mod)[1], lty=2)

> abline(h=.5*coef(pop.mod)[1], lty=2)

> abline(v= -coef(pop.mod)[2]/coef(pop.mod)[3], lty=2)

We have made this plot more complicated than needed simply to display the fit of the logistic model
to the data, in order to show the shape of the fitted curve projected into the future, to include
the estimated population in 2010 (before the 2010 Census was released), and to add lines for the
asymptotes and for the point half way between the asymptotes. While Figure 2 confirms that the
logistic growth mean function generally matches the data, the residual plot in Figure 3 suggests
that there are systematic features that are missed, reflecting differences in growth rates, perhaps
due to factors such as changes in immigration:

> with(USPop, plot(year, residuals(pop.mod), type='b'))

> abline(h=0, lty=2)

7

●
●

●
● ● ●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

1800 1850 1900 1950 2000

−
5

0
5

year

re
si

du
al

s(
po

p.
m

od
)

Figure 3: Residuals from the logistic growth model fit to the U. S. population data.

3 Self-Starting Models

Bates and Watts (1988, Sec. 3.2) describe many techniques for finding starting values for fitting
nonlinear models. For the logistic growth model described in this paper, for example, finding
starting values amounts to (1) guessing the parameter �1 as a value larger than any observed in the
data; and (2) substituting this value into the mean function, rearranging terms, and then getting
other starting values by OLS simple linear regression. This algorithm can of course be written as
an R function to get starting values automatically, and this is the basis of the self-starting nonlinear
models described by Pinheiro and Bates (2000, Sec. 8.1.2).

The self-starting logistic growth model in R is based on a different, but equivalent, parametriza-
tion of the logistic function. We will start again with the logistic growth model, with mean function

m(x,�) =
�1

1 + exp[−(�2 + �3x)]

We have seen that the ratio−�2/�3 is an interesting function of the �s, and so we might reparametrize
this mean function as:

m(x,�) =
�1

1 + exp[−(x− �2)/�3]
As the reader can verify, we have defined �1 = �1 �2 = −�2/�3, and �3 = 1/�3. In the �-
parametrization, �1 is the upper asymptote, �2 is the value of x at which the response is half its
asymptotic value, and �3 is a rate parameter. Because the �-parameters are a one-to-one nonlinear
transformation of the �-parameters, the two models provide the same fit to the data.

Fitting a nonlinear model with the self-starting logistic growth function in R is quite easy:

> pop.ss <- nls(population ˜ SSlogis(year, phi1, phi2, phi3), data=USPop)

> summary(pop.ss)

8

Formula: population ˜ SSlogis(year, phi1, phi2, phi3)

Parameters:

Estimate Std. Error t value Pr(>|t|)

phi1 440.83 35.00 12.6 1.1e-10

phi2 1976.63 7.56 261.6 < 2e-16

phi3 46.28 2.16 21.4 8.9e-15

Residual standard error: 4.91 on 19 degrees of freedom

Number of iterations to convergence: 0

Achieved convergence tolerance: 3.82e-06

The right side of the formula is now the name of a function that has the responsibility for computing
the mean function and for finding starting values. The estimate of the asymptote parameter �1 and
its standard error are identical to the estimate and standard error for �̂1 in the �-parametrization.
Similarly, the estimate for �2 and its standard error are identical to the estimate and standard error
for −�2/�3 obtained from the delta method (page 6). Finally, applying the delta method again,

> deltaMethod(pop.mod, "1/theta3")

Estimate SE

1/theta3 46.28 2.157

we see that �̂3 = 1/�̂3 with the same standard error from the delta method as from the �-
parametrized model.

Table 1 lists the self-starting nonlinear functions that are available in the standard R system.
Pinheiro and Bates (2000, Sec. 8.1.2) discuss how users can make their own self-starting functions.

4 Parametrization

4.1 Linear Reparametrization

In some problems it may be useful to transform a predictor linearly to make the resulting parameters
more meaningful. In the U. S. population data, we might consider replacing the predictor year by
decade = (year− 1790)/10.

> USPop$decade <- (USPop$year - 1790)/10

> (pop.ss.rescaled <- nls(population ˜ SSlogis(decade, nu1, nu2, nu3), data=USPop))

Nonlinear regression model

model: population ˜ SSlogis(decade, nu1, nu2, nu3)

data: USPop

nu1 nu2 nu3

440.83 18.66 4.63

residual sum-of-squares: 458

Number of iterations to convergence: 0

Achieved convergence tolerance: 3.81e-06

9

Function Equation, m(x, �) =

SSasymp Asymptotic regression
�1 + (�2 − �1) exp[− exp(�3)x]

SSasympOff Asymptotic regression with an offset
�1{1− exp[− exp(�2)× (x− �3)]}

SSasympOrig Asymptotic regression through the origin
�1{1− exp[− exp(�2)x]}

SSbiexp Biexponential model
�1 exp[− exp(�2)x] + �3 exp[− exp(�4)x]

SSfol First-order compartment model
D exp(�1+�2)

exp(�3)[exp(�2)−exp(�1)]{exp[− exp(�1)x]− exp([− exp(�2)x]}
SSfpl Four-parameter logistic growth model

�1 + �2−�2
1+exp[(�3−x)/�4]

SSgompertz Gompertz model
�1 exp(�2x

�3)
SSlogis Logistic model

�1/(1 + exp[(�2 − x)/�3])
SSmicmen Michaelis-Menten model

�1x/(�2 + x)
SSweibull Weibull model

�1 + (�2 − �1) exp[− exp(�3)x
�4]

Table 1: The self-starting functions available in R, from Pinheiro and Bates (2000, Appendix C).
Tools are also available for users to write their own self-starting functions.

10

The asymptote parameter estimate is the same in this model. The time at half-asymptote is now
measured in decades, so 18.66× 10 + 1790 = 1977 as before. The rate per decade is 1/10 times the
rate per year. Other summaries, like the estimated value of �, are identical in the two fits.

Scaling like this can often be helpful to avoid computational problems, or to get parameters
that correspond to units of interest. Apart from computational issues, linear transformation of
predictors has no effect on the fitted model.

4.2 Nonlinear Reparametrization

Nonlinear transformations of predictors can also be used to give different representations of the same
fitted model. Sometimes the choice of parametrization can make a difference in computations, with
one parametrization working while another one fails.

Nonlinear transformation brings up an interesting issue. For example, in the logistic growth
model used in this appendix, suppose that in the � parametrization the estimates are approximately
normally distributed. Then, because the �s are nonlinear transformations of the �s, the estimates of
the �s are necessarily not normally distributed. This observation highlights the problem with using
asymptotic normality for inference in nonlinear models. Whether or not approximate normality is
appropriate in the parametrization that was actually employed depends on the parametrization, on
the sample size, and on the values of the data. Determining if normal inference is appropriate is a
difficult issue; see Bates and Watts (1988, Chap. 6) for a graphical approach to this problem, and
the documentation for the nls.profile function in R.

The function bootCase in the car package will compute a case bootstrap that can be used for
inference about nonlinear least squares estimates.4 For example, the following command computes
B = 999 bootstrap samples and retain the values of the coefficient estimates for each bootstrap
sample:

> set.seed(12345) # for repeatability

> out4 <- bootCase(pop.ss, B=999)

> data.frame(summary(pop.ss)$coef[, 1:2],

+ bootMean=apply(out4, 2, mean), bootSD=apply(out4, 2, sd))

Estimate Std..Error bootMean bootSD

phi1 440.83 35.000 420.12 55.451

phi2 1976.63 7.556 1971.62 12.671

phi3 46.28 2.157 45.06 2.942

The differences between the estimates and the bootstrap means suggest substantial bias in the
estimates. The nominal standard errors are also considerably smaller than the standard errors
based on the bootstrap. Histograms of the bootstrap samples, not shown, reveal that the marginal
distribution of each parameter estimate is moderately to severely skewed, suggesting that normal
inference is a poor idea.

5 Nonlinear Mean Functions

Some problems will dictate the form of the nonlinear mean function that is of interest, possibly
through theoretical considerations, differential equations, and the like. In other cases, the choice of

4For information on bootstrapping regression models in R, see Section 4.3.7 of the text and the appendix on
bootstrapping.

11

a mean function is largely arbitrary, as only characteristics of the curve, such as an asymptote, are
known in advance. Ratkowsky (1990) provides a very helpful catalog of nonlinear mean functions
that are used in practice, a catalog that both points out the variety of available functions and some
of the ambiguity in selecting a particular function to study.

For example, consider the following three-parameter asymptotic regression models:

m1(x,�) = �− �x

m2(x,�) = �− � exp(−�x)

m3(x,�) = �{1− exp[−�(x− �)]}
m4(x,�) = �+ (�− �)x

m5(x,�) = �+ (�− �) exp(−�x)

m6(x,�) = �− exp[−(� + �x)]

m7(x,�) = �1 + �[1− exp(−�x)]

All of these equations describe exactly the same function! In each equation, � corresponds to the
asymptote as x→∞, � = �−� is the range of y from its minimum to its maximum, � is the mean
value of y when x = 0, � = log(�) is the log of the range, � is the value of x when the mean response
is 0, and � and are rate parameters. Many of these functions have names in particular areas of
study; for example, m3(x,�) is called the von Bertalanffy function and is commonly used in the
fisheries literature to model fish growth. Ratkowsky (1990, Sec. 4.3) points out that none of these
parametrizations dominates the others with regard to computational and asymptotic properties.
Indeed, other parametrizations of this same function may be used in some circumstances. For
example, Weisberg et al. (2010) reparametrize m3(x,�) as

m30(x,�) = �{1− exp[−(log(2)/�0)(x− �)]}

If x is the age of an organism, then in this parametrization the transformed rate parameter �0 is
the age at which the size y of the organism is expected to be one-half its asymptotic size.

6 Nonlinear Models Fit with a Factor

A common problem with nonlinear models is that we would like to fit a model with the same mean
function to each of several groups of data. For example, the data frame CanPop in the car package
has Canadian population data in the same format at the U. S. data. We combine the two data
frames into one, and then draw a graph of the data for both countries:

> Data <- data.frame(rbind(data.frame(country="US", USPop[,1:2]),

+ data.frame(country="Canada", CanPop)))

> some(Data)

country year population

2 US 1800 5.308

6 US 1840 17.063

10 US 1880 50.189

16 US 1940 132.165

20 US 1980 226.542

21 US 1990 248.710

71 Canada 1911 7.207

12

1800 1850 1900 1950 2000

0
50

10
0

15
0

20
0

25
0

year

po
pu

la
tio

n

● ● ● ● ● ●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

country

US
Canada

Figure 4: U. S. and Canadian population at decennial censuses; the curves were computed by
nonparametric regression.

91 Canada 1931 10.377

111 Canada 1951 13.648

151 Canada 1991 26.429

The combined data frame has a new variable called country with values US or Canada. The some

function from the car package displays a few of the rows of Data.

> scatterplot(population ˜ year|country, data=Data, box=FALSE,

+ reg=FALSE)

The scatterplot function in the car package allows for automatic differentiation of the points by
groups. Setting both box and reg to FALSE suppress the irrelevant boxplots and simple regression
lines, respectively. The lines shown on the plot are nonparametric smooths, which we could also
have suppressed by adding smooth=FALSE to the function call.

We can fit a logistic growth mean function separately to each country. The function nlsList

in the nlme package (Pinheiro and Bates, 2000) makes this easy. By default nlsList assumes
the same variance for the errors in all groups, but this is not appropriate in this example because
the larger U. S. is more variable than Canada. We use the argument pool=FALSE to force separate
estimates of variance in each country:

> library(nlme)

> m.list <- nlsList(population ˜ SSlogis(year, phi1, phi2, phi3)|country,

+ pool=FALSE, data=Data)

> summary(m.list)

13

Call:

Model: population ˜ SSlogis(year, phi1, phi2, phi3) | country

Data: Data

Coefficients:

phi1

Estimate Std. Error t value Pr(>|t|)

US 440.83 35.00 12.595 1.139e-10

Canada 71.45 14.15 5.049 2.228e-04

phi2

Estimate Std. Error t value Pr(>|t|)

US 1977 7.556 261.6 2.942e-35

Canada 2016 16.475 122.3 2.730e-21

phi3

Estimate Std. Error t value Pr(>|t|)

US 46.28 2.157 21.45 8.867e-15

Canada 47.75 3.060 15.60 8.477e-10

> (sds <- sapply(m.list, sigmaHat))

US Canada

4.9087 0.5671

The asymptotes are quite different for the two countries, and the year for achieving half the asymp-
tote is about 40 years later in Canada than in the U. S., but the rate parameters are similar in the
two countries. The residual SD estimates are very different as well.

With a little effort, we can use the deltaMethod function to compute the standard error of the
difference between the rate parameters for the two countries. The object m.list created above is a
list of nls objects. We can use lapply to get the estimates and their estimated variance-covariance
matrices:

> (betas <- lapply(m.list, coef))

$US

phi1 phi2 phi3

440.83 1976.63 46.28

$Canada

phi1 phi2 phi3

71.45 2015.66 47.75

> (vars <- lapply(m.list, vcov))

$US

phi1 phi2 phi3

phi1 1225.02 262.86 69.128

phi2 262.86 57.09 15.229

phi3 69.13 15.23 4.655

14

$Canada

phi1 phi2 phi3

phi1 200.22 232.48 40.835

phi2 232.48 271.42 48.461

phi3 40.83 48.46 9.364

We then use unlist to combine the estimates into a single vector, and also combine the two variance
matrices into a single block-diagonal matrix:

> (betas <- unlist(betas))

US.phi1 US.phi2 US.phi3 Canada.phi1 Canada.phi2 Canada.phi3

440.83 1976.63 46.28 71.45 2015.66 47.75

> zero <- matrix(0, nrow=3, ncol=3)

> (var <- rbind(cbind(vars[[1]], zero), cbind(zero, vars[[2]])))

phi1 phi2 phi3

phi1 1225.02 262.86 69.128 0.00 0.00 0.000

phi2 262.86 57.09 15.229 0.00 0.00 0.000

phi3 69.13 15.23 4.655 0.00 0.00 0.000

phi1 0.00 0.00 0.000 200.22 232.48 40.835

phi2 0.00 0.00 0.000 232.48 271.42 48.461

phi3 0.00 0.00 0.000 40.83 48.46 9.364

> deltaMethod(betas, "US.phi3 - Canada.phi3", vcov=var)

Estimate SE

US.phi3 - Canada.phi3 -1.464 3.744

> deltaMethod(betas, "US.phi2 - Canada.phi2", vcov=var)

Estimate SE

US.phi2 - Canada.phi2 -39.03 18.12

The rate parameters differ by about half a standard error of the difference, while the times at
half-asymptotic population differ by about two standard errors, with the U. S. earlier.

If we number the countries as k = 1, 2 for the U. S. and Canada respectively, then the model fit
by nlsList is

yk(x) =
�1k

1 + exp[−(x− �2k)/�3k]
Interesting hypotheses could consist of testing �21 = �22, �31 = �32, or both of these. We now
proceed to test these relevant hypotheses in R using likelihood-ratio tests. Because the variances
are different for the two countries, we can do this only approximately, by setting weights as follows:

> w <- ifelse(Data$country=="Canada", (sds[1]/sds[2])ˆ2, 1)

This procedure adjusts the residual sum of squares for the combined data to give the same standard
errors we obtained using nlsList. To get exact tests we would need to weight according to the
unknown population variance ratio, rather than the sample variance ratio.

We let can be a dummy variable that has the value 1 for Canada and 0 for the U. S.. Then one
parametrization of the largest model we contemplate is

15

> Data$can <- ifelse(Data$country=="Canada", 1, 0)

> form1 <- population ˜ (1 - can)*(phi11/(1 + exp(-(year - phi21)/phi31))) +

+ can*(phi12/(1 + exp(-(year - phi22)/phi32)))

> b <- coef(m.list)

> m1 <- nls(form1, data=Data, weights=w, start=list(phi11=b[1, 1], phi12=b[1, 2],

+ phi21=b[1, 2], phi22=b[2, 2], phi31=b[1, 3], phi32=b[2, 3]))

A model with the same rate parameter for the two countries, �31 = �32 = �3, is

> form2 <- population ˜ (1 - can)*(phi11/(1 + exp(-(year - phi21)/phi3))) +

+ can*(phi12/(1 + exp(-(year - phi22)/phi3)))

> m2 <- nls(form2, data=Data, weights=w, start=list(phi11=b[1, 1], phi12=b[1, 2],

+ phi21=b[1, 2], phi22=b[2, 2], phi3=b[1, 3]))

The anova function can be used to get the (approximate, because of weighting) likelihood-ratio test
of equal rate parameters:

> anova(m2, m1)

Analysis of Variance Table

Model 1: population ˜ (1 - can) * (phi11/(1 + exp(-(year - phi21)/phi3)))

+ can * (phi12/(1 + exp(-(year - phi22)/phi3)))

Model 2: population ˜ (1 - can) * (phi11/(1 + exp(-(year - phi21)/phi31)))

+ can * (phi12/(1 + exp(-(year - phi22)/phi32)))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 33 775

2 32 771 1 3.8 0.16 0.7

The p-value close to 0.7 suggests no evidence against a common rate. Confidence intervals (approx-
imate because of the approximate weights) for all parameters in the common-rate model are given
by

> confint(m2)

2.5% 97.5%

phi11 396.01 526.07

phi12 55.33 89.35

phi21 1966.60 1993.38

phi22 1994.65 2033.30

phi3 43.48 50.45

There is considerable imprecision in the estimates of the asymptotes, �̂11 and �̂12.
In problems with many groups that can be viewed as sampled from a population groups, an

appropriate model may be a nonlinear mixed model. These are described in Pinheiro and Bates
(2000, Part II), and can be fit using the nlme function in the nlme package.

16

7 Analytic Derivatives

If the errors are assumed to be normally distributed, then the likelihood for the nonlinear regression
model is

L(�, �2) = − 1√
2�

(∏[w
�

])
exp

[
− 1

2�2
S(�)

]
where the product is over the n observations, and S(�) is the residual sum of squares (Equation 2
on page 3) evaluated at �. Because S(�) ≥ 0, the likelihood is maximized by making S(�) as small
as possible, leading to the least squares estimates.

Suppose we let r(�) =
√
w(y −m(x,�)) be the (Pearson) residual at x for a given value of �.

Differentiating S(�) with respect to � gives

∂S(�)

∂�
= −2

∑[
r(�)

∂m (�,x)

∂�

]
Setting the partial derivatives to 0 produces estimating equations for the regression coefficients.
Because these equations are in general nonlinear, they require solution by numerical optimization.
As in a linear model, it is usual to estimate the error variance by dividing the residual sum of
squares for the model by the number of observations less the number of parameters (in preference
to the ML estimator, which divides by n).

Coefficient variances may be estimated from a linearized version of the model. Let

Fij =
∂m (�,xi)

∂�j

where i indexes the observation number and j the element of �. Then the estimated asymptotic
covariance matrix of the regression coefficients is

V̂(�̂) = �̂2(F′F)−1

where �̂2 is the estimated error variance, and F = {Fij} is evaluated at the least squares estimates.
The square roots of the diagonal elements of this matrix are the standard errors returned by the
summary function.

The process of maximizing the likelihood involves calculating the gradient matrix F. By default,
nls computes the gradient numerically using a finite-difference approximation, but it is also possible
to provide a formula for the gradient directly to nls. This is done by writing a function of the
parameters and predictors that returns the fitted values of y, with the gradient as an attribute.

For the logistic growth model in the �-parametrization we used at the beginning of this appendix,
the partial derivatives of m(x,�) with respect to � are

∂m(x,�)

∂�1
= [1 + exp(−(�2 + �3x))]−1

∂m(x,�)

∂�2
= �1[1 + exp(−(�2 + �3x))]−2 exp(−(�2 + �3x))

∂m(x,�)

∂�3
= �1[1 + exp(�2 + �3x)]−2 exp[−(�2 + �3x)x]

In practice, the derivatives are evaluated at the current estimates of the �s.
To use an analytical gradient, the quantity on the right side of the formula must have an

attribute called gradient. Here is how this is done for the logistic growth model:

17

> model <- function(theta1, theta2, theta3, year){

+ yhat <- theta1/(1 + exp(-(theta2 + theta3*year)))

+ term <- exp(-(theta2 + theta3*year))

+ gradient <- cbind((1 + term)ˆ-1, # in proper order

+ theta1*(1 + term)ˆ-2 * term,

+ theta1*(1 + term)ˆ-2 * term * year)

+ attr(yhat, "gradient") <- gradient

+ yhat

+ }

The function model takes as its arguments all the parameters (theta1, theta2, theta3) and the
predictors (in this case, just year). In the body of the function, yhat is set equal to the logistic
growth function, and gradient is the gradient computed according to the formulas just given. We
use the attr function to assign yhat the gradient as an attribute. Our function then returns yhat.
The model function is used with nls as follows:

> (nls(population ˜ model(theta1, theta2, theta3, year),

+ data=USPop, start=list(theta1=400, theta2=-49, theta3=0.025)))

Nonlinear regression model

model: population ˜ model(theta1, theta2, theta3, year)

data: USPop

theta1 theta2 theta3

440.8334 -42.7070 0.0216

residual sum-of-squares: 458

Number of iterations to convergence: 6

Achieved convergence tolerance: 1.31e-06

In many—perhaps most—cases, little is gained by this procedure, because the increase in com-
putational efficiency is more than offset by the additional mathematical and programming effort
required. It might be possible, however, to have one’s cake and eat it too, by using the deriv

function in R to compute a formula for the gradient and to build the requisite function for the right
side of the model. For the example:

> (model2 <- deriv(˜ theta1/(1 + exp(-(theta2 + theta3*year))), # rhs of model

+ c("theta1", "theta2", "theta3"), # parameter names

+ function(theta1, theta2, theta3, year){} # arguments for result

+))

function (theta1, theta2, theta3, year)

{

.expr4 <- exp(-(theta2 + theta3 * year))

.expr5 <- 1 + .expr4

.expr9 <- .expr5ˆ2

.value <- theta1/.expr5

.grad <- array(0, c(length(.value), 3L), list(NULL, c("theta1",

"theta2", "theta3")))

.grad[, "theta1"] <- 1/.expr5

18

.grad[, "theta2"] <- theta1 * .expr4/.expr9

.grad[, "theta3"] <- theta1 * (.expr4 * year)/.expr9

attr(.value, "gradient") <- .grad

.value

}

> (nls(population ˜ model2(theta1, theta2, theta3, year),

+ data=USPop, start=list(theta1=400, theta2=-49, theta3=0.025)))

Nonlinear regression model

model: population ˜ model2(theta1, theta2, theta3, year)

data: USPop

theta1 theta2 theta3

440.8334 -42.7070 0.0216

residual sum-of-squares: 458

Number of iterations to convergence: 6

Achieved convergence tolerance: 1.31e-06

The first argument to deriv gives the right side of the model as a one-sided formula; the second
argument specifies the names of the parameters, with respect to which derivatives are to be found;
and the third argument is a function with an empty body, specifying the arguments for the function
that is returned by deriv.

8 Complementary Reading and References

Nonlinear regression and nonlinear least squares are discussed in Weisberg (2005, Chap. 11) and
Fox (2008, Chap. 15). Bates and Watts (1988) present a comprehensive treatment of the subject;
a brief introduction is provided by Gallant (1975). The use of the nls function in S is described in
detail by Bates and Chambers (1992); much of this material is also relevant to R. Also see Pinheiro
and Bates (2000, Sec. 8.1).

References

Bates, D. and Watts, D. (1988). Nonlinear Regression Analysis and Its Applications. Wiley, New
York.

Bates, D. M. and Chambers, J. M. (1992). Nonlinear models. In Chambers, J. M. and Hastie,
T. J., editors, Statistical Models in S, pages 421–454. Wadsworth, Pacific Grove, CA.

Fox, J. (2008). Applied Regression Analysis and Generalized Linear Models. Sage, Thousand Oaks,
CA, second edition.

Fox, J. and Weisberg, S. (2011). An R Companion to Applied Regression. Sage, Thousand Oaks,
CA, second edition.

Gallant, A. R. (1975). Nonlinear regression. The American Statistician, 29:73–81.

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS. Springer, New
York.

19

Ratkowsky, D. A. (1990). Handbook of Nonlinear Regression Models. Marcel Dekker, New York.

Weisberg, S. (2005). Applied Linear Regression. John Wiley & Sons, Hoboken, NJ, third edition.

Weisberg, S., Spangler, G., and Richmond, L. S. (2010). Mixed effects models for fish growth. Can.
J. Fish. Aquat. Sci., 67(2):269–277.

20

