SQL Server 2000 Wait Types
 
	Wait type
	Description
	Comment

	ASYNC_DISKPOOL_LOCK
	During backup and restore (for example, zeroing out pages), threads are written in parallel. 
	Possible disk bottleneck. See PhysicalDisk counters for confirmation.

	ASYNC_I/O_COMPLETION
	Waiting for asynchronous I/O requests to complete. 
Identify disk bottlenecks, using counters, Profiler, ::fn_virtualfilestats, and Showplan.
Doing any of the following will reduce these waits:
·         Adding additional I/O bandwidth.
·         Balancing I/O across other drives.
·         Reducing I/O with proper indexing.
·         Checking for bad query plans.
·         Checking for memory pressure.
	See PhysicalDisk counters: 
·         Disk sec/Read
·         Disk sec/Write
·         Disk Queues
See SQL Server Buffer Manager counters for memory pressure:
·         Page Life Expectancy
·         Checkpoint Pages/sec
·         Lazy Writes/sec
See SQL Server Access Methods counters for correct indexing:
·         Full Scans/sec
·         Index Searches/sec
Use the system table-valued function fn_virtualfilestats to check IoStallMS value. IoStallMS is the cumulative number of milliseconds of I/O waits for a particular file. If IoStallMS is inordinately high for one or more files, you have a disk bottleneck. To display IoStallMS, execute the query:
SELECT * FROM ::fn_virtualfilestats (dbid,file#) 
To list all files for a database, execute: 
SELECT * FROM ::fn_virtualfilestats (dbid,-1) 
SQL Profiler can be used to identify which Transact-SQL statements do scans. Select the Scans event category and the Scan:Started and Scan:Stopped events. Include the Object ID data column. Save the Profiler trace to a trace table, and then search for the Scans event. The Scan:Stopped event provides associated I/O so you can also search for high reads, writes, and duration.
Check Showplan for bad query plans.

	CMEMTHREAD
	Waiting for thread-safe memory objects.
	 

	CURSOR
	Asynchronous cursor thread.
	 

	CXPACKET
	Parallel process waits. Possible skew of data possible lock of a range for this CPU, meaning that one parallel process is behind, etc.
	Check for parallelism using sp_configure 'max degree of parallelism'. 
If max degree of parallelism = 0, you may want to do one of the following:
·         Turn off parallelism by setting max degree of parallelism to 1 
·         Limit parallelism by setting max degree of parallelism to less than the total number of CPUs. For example, if you have 8 procedures, set max degree of parallelism to 4 or less.

	DBTABLE
	New checkpoint request is waiting for outstanding checkpoint request to complete.
	See SQL Server Buffer Manager counters:
·         Page Life Expectancy
·         Checkpoint Pages/sec
·         Lazy Writes/sec

	DTC
	Waiting for Distributed Transaction Coordinator.
	Check transaction isolation level.

	EC
	Non-parallel synchronization between parent and child thread.
	 

	EXCHANGE
	Waiting on a parallel process to complete, shutdown or startup.
	Check for parallelism using sp_configure 'max degree of parallelism'. 
If max degree of parallelism = 0, you may want to do one of the following:
·         Turn off parallelism entirely by setting max degree of parallelism to 1 
·         Limit parallelism by setting max degree of parallelism to less than the total number of CPUs. For example, if you have eight procedures, set max degree of parallelism to 4 or less.

	EXECSYNC
	Query memory and spooling to disk.
	 

	I/O_COMPLETION
	Waiting for I/O requests to complete. 
Identify disk bottlenecks, using counters, Profiler, ::fn_virtualfilestats, and Showplan.
Any of the following will reduce these waits:
·         Adding additional I/O bandwidth.
·         Balancing I/O across other drives.
·         Reducing I/O with proper indexing.
·         Check for bad query plans.
	See PhysicalDisk counters: 
·         Disk Sec/read
·         Disk Sec/write
·         Disk Queues
See SQL Server Buffer Manager counters:
·         Page Life Expectancy
·         Checkpoint Pages/sec
·         Lazy Writes/sec
See SQL Server Access Methods counters for correct indexing:
·         Full Scans/sec
·         Index Searches/sec
See the Memory counter: 
·         Page Faults/sec
Use the system table-valued function fn_virtualfilestats to check IoStallMS value. IoStallMS is the cumulative number of milliseconds of I/O waits for a particular file. If IoStallMS is inordinately high for one or more files, you have a disk bottleneck. To display IoStallMS, execute the query:
SELECT * FROM ::fn_virtualfilestats(dbid,file#) 
SQL Profiler can help identify which Transact-SQL statements do scan. Select the event category Scans and events Scan:Started and Scan:Stopped. Include the Object ID data column. Save the profiler trace to a trace table, and then search for the scans event. The Scan:Stopped event provides associated I/O so you can also search for high reads, writes, and duration.
Check Showplan for bad query plans.

	LATCH_x
	Short-term light-weight synchronization objects. Latches are not held for the duration of a transaction. 
"Plain" latches are generally unrelated to I/O. These latches can be used for a variety of things, but they are not used to synchronize access to buffer pages (PAGELATCH_x is used for that). 
Possibly the most common case is contention on internal caches (not the buffer pool pages), especially when using heaps, text, or both. 
	If high, check Perfmon for memory pressure or SQL Server latch waits. 
Look for LOG and PAGELATCH_UP wait types. LATCH_x waits can often be improved by solving LOG and PAGELATCH_UP contention. 
In the absence of contention, partition the table or index in question to create multiple caches (the caches are per-index).

	LATCH_DT
	Destroy latch.
	See LATCH_x.

	LATCH_EX
	Exclusive latch.
	See LATCH_x.

	LATCH_KP
	Keep latch.
	See LATCH_x.

	LATCH_NL
	Null latch.
	See LATCH_x.

	LATCH_SH
	Shared latch.
	See LATCH_x.

	LATCH_UP
	Update latch.
	See LATCH_x.

	LCK_x
	Possible transaction management issue. 
·         For shared locks, check Isolation level for transaction. 
·         Keep transaction as short as possible.
	See SQL Server Locks counter:
·         Lock Wait Time (ms)
Check for memory pressure, which causes more physical I/O, thus prolonging the duration of transactions and locks.

	LCK_M_BU
	Bulk update lock.
	See LCK_x.

	LCK_M_IS
	Intent share lock.
	See LCK_x.

	LCK_M_IU
	Intent update lock.
	See LCK_x.

	LCK_M_IX
	Intent exclusive lock.
	See LCK_x.

	LCK_M_RIn_NL
	Range intent null lock.
	See LCK_x.

	LCK_M_RIn_S
	Range intent shared lock.
	See LCK_x.

	LCK_M_RIn_U
	Range intent update lock.
	See LCK_x.

	LCK_M_RIn_X
	Range intent exclusive lock.
	See LCK_x.

	LCK_M_RS_S
	Range-shared shared (key-range) lock.
	See LCK_x.

	LCK_M_RS_U
	Range-shared update (key-range) lock
	See LCK_x.

	LCK_M_RX_S
	Range-exclusive shared (key-range) 
	See LCK_x.

	LCK_M_RX_U
	Range-exclusive update (key-range) lock
	See LCK_x.

	LCK_M_RX_X
	Range-exclusive exclusive (key-range) 
	See LCK_x.

	LCK_M_S
	Shared lock.
	See LCK_x.

	LCK_M_SCH_M
	Modify schema lock.
	See LCK_x.

	LCK_M_SCH_S
	Shared schema (stability) lock
	See LCK_x.

	LCK_M_SIU
	Share intent update lock.
	See LCK_x.

	LCK_M_SIX
	Share intent exclusive lock.
	See LCK_x.

	LCK_M_U
	Update lock.
	See LCK_x.

	LCK_M_UIX
	Update intent exclusive lock.
	See LCK_x.

	LCK_M_X
	Exclusive lock.
	See LCK_x.

	LOGMGR
	Waiting for write requests to the transaction log to complete. 
Identify disk bottlenecks, using Perfmon counters, Profiler, and ::fn_virtualfilestats
 
Doing any of the following will reduce these waits:
·         Adding additional I/O bandwidth.
·         Balancing I/O across other drives.
·         Placing the transaction log on its own drive.
	See PhysicalDisk counters: 
·         Disk Sec/read
·         Disk Sec/write
·         Disk Queues
See SQL Server Buffer Manager counters:
·         Page Life Expectancy
·         Checkpoint Pages/sec
·         Lazy Writes/sec
Use the system table-valued function fn_virtualfilestats to check IoStallMS value. IoStallMS is the cumulative number of milliseconds of I/O waits for a particular file. If IoStallMS is inordinately high for one or more files, you have a disk bottleneck. To display IoStallMS for transaction log, execute:
SELECT * FROM ::fn_virtualfilestats(dbid,file#)

	MISCELLANEOUS
	Catch all wait types.
	 

	NETWORKIO
	Waiting on network I/O completion. Waiting to read or write to a client on the network.
This can occur if a client is in the middle of sending packets to SQL Server, or when SQL writes data to a client and is waiting for an ACK. 
	Check bandwidth of your network interface card. 100 mbits is preferable to 10 mbs.

	OLEDB
	OLEDB waits. Common causes are:
·         SQL Server is waiting for client application to send data. 
·         A linked server or remote procedure call (RPC).
 
	Check placement of client application, including any file input read by the client and SQL Server data and log files. See Disk secs/Read and Disk secs/Write. If Disk secs/Read is high, add additional I/O bandwidth, balance I/O across other drives, or put the database and transaction log on its own drives. 
Inspect Transact-SQL code for RPC, Distributed (Linked Server), and Full Text Search. Although SQL Server supports these kinds of queries, they sometimes cause bottlenecks. 
To get the Transact-SQL statement involved in OLEDB waits, select virtual table master..sysprocesses as follows:
·         SQL2000 Service Pack 3 Only
DECLARE @Handle binary(20)
SELECT @Handle = sql_handle FROM sysprocesses 
WHERE waittype = 0x0042
SELECT * FROM ::fn_get_sql(@Handle)
·         SQL2000 RTM, SP1, and SP2 (limited to 255 characters), run dbcc inputbuffer (spid)
 

	PAGEIOLATCH_x
	Short-term synchronization objects used to synchronize access to buffer pages. PageIOLatch is used for disk-to-memory transfers.
	If the wait is significant, it normally suggests disk I/O subsystem issues. Check PhysicalDisk counters.

	PAGEIOLATCH_DT
	I/O page destroy latch.
	See PAGEIOLATCH_x

	PAGEIOLATCH_EX
	I/O page latch exclusive.
	See PAGEIOLATCH_x

	PAGEIOLATCH_KP
	I/O page latch keep.
	See PAGEIOLATCH_x

	PAGEIOLATCH_NL
	I/O page latch null.
	See PAGEIOLATCH_x

	PAGEIOLATCH_SH
	I/O page latch shared.
	See PAGEIOLATCH_x

	PAGEIOLATCH_UP
	I/O page latch update.
	See PAGEIOLATCH_x

	PAGELATCH_x
	Short-term light-weight synchronization objects. Latches are not held for the duration of a transaction. Typical latching operations occur during row transfers to memory, controlling modifications to row offset table, etc. Consequently, latch duration is normally sensitive to available memory.
	If the wait is significant, it normally indicates cache contention.

	PAGELATCH_DT
	Page latch.
	See PAGELATCH_x.

	PAGELATCH_EX
	Page latch exclusive.
Contention can be caused by issues other than I/O or memory performance. For example, heavy concurrent inserts into the same index range can cause this type of contention. If many inserts need to be placed on the same page, they are serialized using the latch. Many inserts into the same range can also cause page splits in the index, which will hold onto the latch while allocating a new page (this can take a while). Any read accesses to the same range as the inserts would also conflict on the latches. The solution in these cases is to distribute the inserts using a more appropriate 
	See PAGELATCH_x.

	PAGELATCH_KP
	Page latch keep.
	See PAGELATCH_x.

	PAGELATCH_NL
	Page latch null.
	See PAGELATCH_x.

	PAGELATCH_SH
	Page latch shared.
Contention can be caused by issues other than I/O or memory performance; for example, heavy concurrent inserts into the same index range can cause this type of contention. If many inserts need to be placed on the same page they are serialized using the latch. Many inserts into the same range can also cause page splits in the index, which will hold onto the latch while allocating a new page (this can take a while). Any read accesses to the same range as the inserts would also conflict on the latches. The solution in these cases is to distribute the inserts using a more appropriate 
	See PAGELATCH_x.

	PAGELATCH_UP
	Page latch update. Used only for allocation related pages, contention on it is often a sign that more files are needed. With multiple files, allocations can be distributed across multiple files, thus reducing demand on the per-file data structures stored on these pages. The contention is not I/O performance, but rather internal allocation contention to access the pages: adding more spindles to a file or moving the file to a faster disk will not help, nor will adding more memory.
	See PAGELATCH_x.

	PAGESUPP
	Waits for parallel page supplier. Possible disk bottleneck.
Doing any of the following will reduce these waits:
·         Adding additional I/O bandwidth.
·         Balancing I/O across other drives.
·         Reducing I/O with proper indexing.
·         Checking for bad query plans.
	See PhysicalDisk counters: 
·         Disk sec/Read
·         Disk sec/Write
·         Disk Queues
See SQL Server Buffer Manager counters:
·         Page Life Expectancy
·         Checkpoint Pages/sec
·         Lazy Writes/sec
Check IoStallMS for database:
·         SELECT * FROM ::fn_virtualfilestats(dbid,file#)

	PIPELINE_INDEX_STAT
	Allows one user to perform multiple operations such as writes to log cache on the user's own behalf, as well as that of other users who are waiting for same operation. It does all log writes in single operation.
	See PhysicalDisk counters: 
·         Disk sec/Read
·         Disk sec/Write
·         Disk Queues
See SQL Server Buffer Manager counters:
·         Page Life Expectancy
·         Checkpoint Pages/sec
·         Lazy Writes/sec
Check IoStallMS for database:
·         SELECT * FROM ::fn_virtualfilestats(dbid,file#)

	PIPELINE_LOG
	Allows one user to perform multiple operations such as writes to log cache on the user's own behalf as well as that of other users who are waiting for same operation. Does in single operation.
	See PhysicalDisk counters: 
·         Disk sec/Read
·         Disk sec/Write
·         Disk Queues
See SQL Server Buffer Manager counters:
·         Page Life Expectancy
·         Checkpoint Pages/sec
·         Lazy Writes/sec
Check IoStallMS for database:
·         SELECT * FROM ::fn_virtualfilestats(dbid,file#)

	PIPELINE_VLM
	PIPELINE wait types allow one user to perform multiple operations such as writes to log cache on the user's behalf as well as that of other users who are waiting for same operation. Does in single operation.
	See PhysicalDisk counters: 
·         Disk sec/Read
·         Disk sec/Write
·         Disk Queues
See SQL Server Buffer Manager counters:
·         Page Life Expectancy
·         Checkpoint Pages/sec
·         Lazy Writes/sec
Check IoStallMS for database
·         SELECT * FROM ::fn_virtualfilestats(dbid,file#)

	PSS_CHILD
	Waiting on Asynch thread.
	 

	RESOURCE_QUEUE
	Internal use only.
	 

	RESOURCE_SEMAPHORE
	Common for DSS like workload and large queries such as hash joins; must wait for memory grant before execution.
	See SQL Server Memory Manager counters:
·         Memory Grants Pending
·         Memory Grants Outstanding

	SHUTDOWN
	When NOWAIT is not specified, waits for other users to logout before shutdown completes.
	Monitor SQL Statistics:User Connections.
To expedite shutdown, you can:
·         Run SHUTDOWN WITH NOWAIT.
·         Use the KILL command to terminate user connections.

	SLEEP
	Internal use only.
	 

	TEMPOBJ
	Dropping a global temp object that is being used by others.
	 

	TRAN_MARK_DT
	Transaction latch - destroy.
	 

	TRAN_MARK_EX
	Transaction latch - exclusive.
	 

	TRAN_MARK_KP
	Transaction latch - keep page.
	 

	TRAN_MARK_NL
	Transaction latch - null.
	 

	TRAN_MARK_SH
	Transaction latch - shared.
	 

	TRAN_MARK_UP
	Transaction latch - update. 
	 

	UMS_THREAD
	Batch waiting for a worker thread to free up, or batch waiting to get a worker thread to run it.
	If the percentage is high, increase the number of worker threads from the default of 255. The maximum is 1024.

	WAITFOR
	 
	Inspect Transact-SQL code for WAITFOR DELAY statement.

	WRITELOG
	Waiting for write requests to the transaction log to complete. 
Identify disk bottlenecks using counters, Profiler, ::fn_virtualfilestats, and Showplan.
Any of the following will reduce these waits:
·         Adding additional I/O bandwidth.
·         Balancing I/O across other drives.
·         Placing the transaction log on its own drive.
	See PhysicalDisk counters: 
·         Disk sec/Read
·         Disk sec/Write
·         Disk Queues
See SQL Server Buffer Manager counters:
·         Page Life Expectancy
·         Checkpoint Pages/sec
·         Lazy Writes/sec
Check IoStallMS for transaction log:
·         SELECT * FROM ::fn_virtualfilestats(dbid,file#)
 

	XACTLOCKINFO
	Transaction escalation, rollback.
	 


 
 
