Using R for Smoothing and Filtering

In the following handout words and symbols in bold are R functions and words and
symbols in italics are entries supplied by the user; underlined words and symbols are
optional entries (all current as of version R-2.4.1). Sample texts from an R session are
highlighted with gray shading.

The data in this tutorial are in the file “Signal&Noise,” which consists of a true signal of

three Gaussian peaks, pure homoscedastic noise and the raw signal, which is a sum of the
true signal and the noise. Each object has 1024 discrete values. The figure below shows
the raw signal as discrete points and the true signal as a smooth curve.

> plot(sn) # raw signal plus as points
> points(signal, type = “I"") # line represents true signal

sn
40 80 100
|

20

Moving-Average and Savitisky-Golay Smoothing Functions

R provides a generic function for smoothing data that uses a user-defined moving-
average or Savitsky-Golay smoothing function. The basic syntax for the command is:

filter(data, filtercoef)
where data is an object containing the data being smoothed and filtercoef is an object
containing the smoothing function’s coefficients. To create a 5-point moving-average
smoothing function, for example, we can use the following command:

> mab=c(1,1,1,1,1)/5 mad> # vector of 1s divided by size of function gives...

[1]0.2 0.2 0.2 0.2 0.2 #...a vector of coefficients whose sum is 1

For a small moving-average smoothing function, this is a reasonable approach; however,
for a large-moving average smoothing function, such as one involving 25 points, this is
tedious. We can use the function rep to simplify the code

rep(value, repetitions)

where value is the value to be repeated and repetitions is the number of repetitions. A
25-point moving-average smoothing function can be created with the following code

> ma25 = c(rep(1, 25))/25; ma25

[1] 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
[12] 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
[23] 0.04 0.04 0.04

A Savitsky-Golay smoothing function is just as easy to code; thus, for a 5-point quadratic
or cubic smoothing function we have

>sg5=c¢(-3, 12, 17, 12, -3)/35
where the terms within the code c() are the coefficients, and the divisor is the
normalization constant. Values for these coefficients and normalization constant come

from published tables.

As a practical example, the following code

> layout(matrix(1:3, 3,1)) # set up three areas for graphing

> plot(sn,type="1",main="0riginal Data")

> sn.ma5=filter(sn,mab) # apply five-point moving average filter
> sn.sg5=filter(sn,sg5) # apply five-point Savitsky-Golay filter

> plot(sn.ma5, main="Five-Point Moving Average Filter")
> plot(sn.sg5, main="Five-Point Savitsky-Golay Filter")

produces a much improved signal

Original Data

g0

=N
40
| N T Y |

=
T T T T T T
0 200 400 [70]] oo 1000
Incles
Five-Point Moving Average Filter
==
[xn)
L
2 _
E o |
c =
= —
o -
I I I T T T
0 200 400 500 500 1000
Titme
Five-Point Savitsky-Golay Filter
2 4
==}
(v —
=)
L
= =
© -
o -

] 200 400 B00 g00 1000

Time

Fourier Filtering

Two commands are used when Fourier transforming data. To obtain the Fourier
transform the command is

fft(object)

where object is a vector containing the data. To obtain the inverse Fourier transform, the
code is

fft(object, inverse = TRUE)

Taking the Fourier transform of a vector followed by the inverse Fourier transform
should return the original vector. Because the command fft does not return a normalized
vector, however, it is necessary to divide the inverse Fourier transform by the vector’s
length; thus

> t=1:4;t # object with values of 1, 2, 3 and 4

[1]1 23 4
> t1 = ffi(t); t1 # taking the FFT of t produces...
[1] 10+0i -2+2i -2+0i -2-2i # ...this set of four complex numbers
> t2 = fft(t1, inverse = TRUE); t2 # taking the inverse FFT produces...
) [1] 4+0i 8+0i 12+0i 16+0i # ...aresult that is not equivalent to t
ut...

> t3 = fft(t1, inverse = TRUE)/length(t1); t3 # dividing the IFFT by length returns...
[1] 1+0i 2+0i 3+0i 4+0i # ...the original t

The Fourier transform, as shown above, creates a vector of complex numbers consisting
of real and imaginary parts. The real part of the complex number provides information
about the amplitudes and frequencies in terms of cosine functions and the imaginary part
provides the same information in terms of sine functions. We can work with either, but
the convention is to use the real terms. To extract the real part of the Fourier transform
we use the command

Re(object)

> sn.fft = fft(sn); plot(Re(sn.fft), type = “I”") # plot the real part of FT only

10000 15000
| 1

Re(snift)
5000

0
|

-5000

-10000
1

T I T T T T
] 200 400 600 200 1000

Index

This plot is symmetrical (nearly) because only the first 512 points are unique; the
remaining 512 points are a mirror image, within computational limitations. The Fourier
transform cannot produce additional information; since we start with 1024 points and end
with both real and imaginary points, each can have only 512 unique values. To separate
the real terms into those due to the signal and those representing noise, we expand the
first portion of the data; thus

> plot(Re(sn.fft), xlim = ¢(0, 150), type = “I”) # examine the first 150 points

5000 10000 15000
| | |

Reisnfft)

0
1

-5000
1

-10000
|

0 50 100 150

Inclex

By the 50™ point we seem comfortably into terms accounting for noise only. To filter the
noise we set all but the first 50 and the last 50 points to zero; thus

> sn.fft[51:974] = 0 + Oi

Note that both the real and imaginary parts are set to zero. Next, we complete the
normalized inverse Fourier transform

> sn.ifft = fft(sn.fft, inverse = TRUE)/length(sn.fft)

Finally, we plot the filtered and original data, using the real portion of the sn.ifft (note —
the function fft always produces a complex number, but for the inverse fft the imaginary
portion is zero and only the real portion contains information)

> layout(matrix(1:2,2,1)
> plot(sn, type="1", main="0riginal Data")
> plot(Re(sn.ifft),type="1", main="Fourier Transform Filtering™)

=1

Felsn.ifft)

80

40

80

40

Original Data

200 400 600 800 1000

Index

Fourier Transform Filtering

200 400 GO0 800 1000

Index

