_覓 | 覦覈襦 | 豕蠏手 | 殊螳 | 譯殊碁 |
FrontPage › 覿襯蠍一
|
|
覲旧″ 覲伎願 螻蠍 覲伎企 螻襴讀 企り 蟆郁骸螳 譬讌讌 .
譴 蟆 '覲'. [edit]
1 sampling #7:3朱 一危磯ゼ
nrow(iris) #150 #training set sampling, test set sampling library("caret") partition_idx <- createDataPartition (iris$Species, p=0.3)$Resample1 training <- iris[partition_idx, ] test <- iris[-partition_idx, ] nrow(training); nrow(test) #45;105 over/under sampling
library("DMwR") resample.df <- SMOTE(Species~., data=iris, perc.over=100, perc.under=50) table(resample.df$Species)觜 谿願 2:1 谿企り , 一危郁 讓曙 over sampling(perc.over=100)螻, 一危郁 襷 讓曙 under sampling(perc.under=50) . 豕蠏殊 伎 螻襴讀 class襯 蟆一 れ 0~1伎 random 螳 螻燕 一危磯ゼ 豢螳り . [edit]
2 ctree(conditional inference tree) #蟆一碁Μ(rpart れ) れ 2螳讌 覓語襯 螳讌螻 .
library(party) model <- ctree(Species~., data=training) pred <- predict(model, newdata=test, type="response") library (caret) confusionMatrix(predict(model, newdata=test, type="response"), test$Species) [edit]
3 SVM #library(e1071) model <- svm(Species ~ ., data = training) pred <- predict(model, newdata=test, type="response") library (caret) confusionMatrix(pred, test$Species) table(pred, test$is_out) obj <- tune.svm(factor(is_out)~., data = training, sampling = "fix", gamma = 2^c(-8,-4,0,4), cost = 2^c(-8,-4,-2,0)) plot(obj, transform.x = log2, transform.y = log2) plot(obj, type = "perspective", theta = 120, phi = 45) library("kernlab") model <- ksvm(factor(is_out) ~., data=training, kernel = "rbfdot") pred <- predict(model, newdata=test2, type="response") confusionMatrix(pred, test2$is_out) [edit]
4 kNN #library("class") pred <- knn(training[,1:4], test[,1:4], training$Species, k = 5, prob=TRUE) library (caret) confusionMatrix(pred, test$Species) [edit]
5 randomForest #library("randomForest") model <- randomForest(Species ~ ., data=training, type="classification", importance=TRUE) pred <- predict(model, newdata=test) library (caret) confusionMatrix(pred, test$Species) [edit]
6 neural networks #library(nnet) model <- nnet(Species~., data=training, size=5) pred <- predict(model, newdata=test, type="class") library (caret) confusionMatrix(pred, test$Species) [edit]
7 logistic regression #library(nnet) model <- multinom(Species~., data=training) #head (fitted(out)) #蟆郁骸 襯 pred <- predict(model, newdata=test, type="class") library (caret) confusionMatrix(pred, test$Species) summary(model)
> summary(model) Call: multinom(formula = Species ~ ., data = training) Coefficients: (Intercept) Sepal.Length Sepal.Width Petal.Length Petal.Width versicolor 157.4558 -45.15929 -27.99315 79.58368 -58.51255 virginica -157.1791 13.78356 -82.12478 54.58758 80.74923 Std. Errors: (Intercept) Sepal.Length Sepal.Width Petal.Length Petal.Width versicolor 17101.14 9088.735 10475.50 4091.601 7197.552 virginica 17101.14 9088.740 10475.49 4091.600 7197.552 Residual Deviance: 0.0001210002 AIC: 20.00012 > [edit]
8 ada booting #library(ada) model <- ada(Species~., data=training) pred <- predict(model, newdata=test) library (caret) confusionMatrix(pred, test$Species) [edit]
9 naive bayes #library(e1071) model <- naiveBayes(Species~., data=training) pred <- predict(model, newdata=test) library (caret) confusionMatrix(pred, test$Species) [edit]
10 gam #library("mgcv") model <- gam(危覿 ~ s(覲1) + s(覲2),family=binomial, data=training) summary(model) pred <- predict(model, test, type="response") confusionMatrix(ifelse(pred < 0.5, "危", "譟"), test$危覿) [edit]
11 som #library("kohonen") training.class <- training$Species test.class <- test$Species training <- scale(training[,1:4]) test <- scale(test[,1:4]) model <- som(training, grid = somgrid(5, 5, "hexagonal")) pred <- predict(model, newdata = test, trainX = training, trainY = factor(training.class)) confusionMatrix(pred$prediction, test.class) [edit]
12 2 ##ctree library(party) library (caret) model <- ctree(factor(is_out)~., data=training) #model <- ctree(factor(is_out)~., data=training, weights=ifelse(training$蟲襷り唄 >= 0, 100, 1)) pred <- predict(model, newdata=test, type="response") confusionMatrix(predict(model, newdata=test, type="response"), test$is_out) #randomForest library(randomForest) model <- randomForest(factor(is_out) ~ ., data=training, type="classification", importance=TRUE, proximity=TRUE) pred <- predict(model, newdata=test) confusionMatrix(pred, test$is_out) imp <- data.frame(importance(model)) imp[order(imp$MeanDecreaseGini, decreasing=T),] varImpPlot(model) #CART library(rpart) model <- rpart(factor(is_out) ~., data=training, method="class") pred <- predict(model, newdata=test, type="class") confusionMatrix(pred, test$is_out) #SVM library(e1071) model <- svm(factor(is_out) ~., data=training, method="class") pred <- predict(model, newdata=test, type="class") confusionMatrix(pred, test$is_out) #NN library(nnet) model <- nnet(factor(is_out) ~., data=training, size=40, method="class") pred <- predict(model, newdata=test, type="class") confusionMatrix(pred, test$is_out) #kNN library("class") pred <- knn(training[,2:ncol(training)], test[,2:ncol(training)], training$is_out, k = 7, prob=TRUE) confusionMatrix(pred, test$is_out) #logistic regression library(nnet) model <- multinom(is_out~., data=training) pred <- predict(model, newdata=test, type="class") confusionMatrix(pred, test$is_out)
鏤
|
伎觜螳 企Μ螻 . 轟 覦 螳 一一 ク. 蠏瑚朱 豢覿.蟲讌蟲讌蟆 觜螳 る蟲! 企 襷 覓伎 螳. 觜 蟲襴 覦 蟆一 襷襦 讌 伎Ц 觜 覯 る所 企Μ蟲謂螻 襷讌 覈詩螳. <<襷 覲牛伎 255螳讌 伎手鍵>> () |