_覓 | 覦覈襦 | 豕蠏手 | 殊螳 | 譯殊碁 |
FrontPage › 譟企
|
|
譟企, 蟾讌 讌, 豺企磯 豈 襴.
[edit]
1 螳 #譟 覿 譯 蟯
[edit]
5 :譟危 #normally
library("RODBC") conn <- odbcConnect("192.168.201.36",uid="id", pwd="pw") x <- sqlQuery(conn, "select * from ods.dbo.v_h") #焔覲襦 谿願 螳? out <- survfit(Surv(time, status==1) ~ gender, data=x) plot(out, lty=1:2, col=c("red", "blue")) survdiff(Surv(time, status==1) ~ gender, data=x) survdiff(Surv(time, status==1) ~ gender, data=x) 蟆郁骸 れ螻 螳. survdiff 譟危襯 視.
> survdiff(Surv(time, status==1) ~ gender, data=x) Call: survdiff(formula = Surv(time, status == 1) ~ gender, data = x) N Observed Expected (O-E)^2/E (O-E)^2/V gender=0 881 804 852 2.70 6.14 gender=1 1142 1054 1006 2.28 6.14 Chisq= 6.1 on 1 degrees of freedom, p= 0.0132p-value螳 0.0132襦 譴 0.05 蠏覓願 蠍郁, 襴所 豈. 讀, 焔覲襦 谿願 誤 . summary(out) 蟆郁骸襯 覲伎. > summary(out) Call: survfit(formula = Surv(time, status == 1) ~ gender, data = x) gender=0 time n.risk n.event survival std.err lower 95% CI upper 95% CI 1 881 281 0.6810 0.01570 0.6510 0.7125 2 525 34 0.6369 0.01641 0.6056 0.6699 3 491 25 0.6045 0.01680 0.5725 0.6384 4 466 9 0.5928 0.01692 0.5606 0.6269 5 457 13 0.5760 0.01708 0.5435 0.6104 6 444 10 0.5630 0.01718 0.5303 0.5977 7 434 9 0.5513 0.01726 0.5185 0.5862 8 425 8 0.5409 0.01732 0.5080 0.5760 9 417 5 0.5345 0.01735 0.5015 0.5696 10 412 2 0.5319 0.01736 0.4989 0.5670 11 410 8 0.5215 0.01741 0.4885 0.5567 12 402 5 0.5150 0.01743 0.4819 0.5503 13 397 4 0.5098 0.01745 0.4767 0.5452 14 393 5 0.5033 0.01747 0.4702 0.5387 15 388 8 0.4929 0.01749 0.4598 0.5284 16 380 3 0.4891 0.01749 0.4559 0.5246 17 377 4 0.4839 0.01750 0.4508 0.5194 18 373 4 0.4787 0.01750 0.4456 0.5142 19 369 1 0.4774 0.01750 0.4443 0.5129 20 368 2 0.4748 0.01750 0.4417 0.5104 21 366 2 0.4722 0.01750 0.4391 0.5078 22 364 2 0.4696 0.01750 0.4365 0.5052 23 362 3 0.4657 0.01750 0.4326 0.5013 24 359 3 0.4618 0.01750 0.4288 0.4974 . . . gender=1 time n.risk n.event survival std.err lower 95% CI upper 95% CI 1 1142 437 0.6173 0.01438 0.5898 0.6462 2 618 57 0.5604 0.01490 0.5319 0.5904 3 561 24 0.5364 0.01505 0.5077 0.5667 4 537 20 0.5164 0.01514 0.4876 0.5470 5 517 7 0.5095 0.01516 0.4806 0.5400 6 510 10 0.4995 0.01519 0.4706 0.5301 7 500 11 0.4885 0.01521 0.4596 0.5192 8 489 6 0.4825 0.01522 0.4536 0.5133 9 483 11 0.4715 0.01523 0.4426 0.5023 10 472 9 0.4625 0.01523 0.4336 0.4933 11 463 4 0.4585 0.01523 0.4296 0.4894 12 459 11 0.4475 0.01522 0.4187 0.4784 13 448 4 0.4435 0.01522 0.4147 0.4744 14 444 7 0.4365 0.01520 0.4077 0.4674 15 437 6 0.4305 0.01519 0.4018 0.4614 16 431 7 0.4235 0.01517 0.3948 0.4544 17 424 5 0.4186 0.01516 0.3899 0.4493 18 419 9 0.4096 0.01512 0.3810 0.4403 19 410 2 0.4076 0.01512 0.3790 0.4383 20 408 5 0.4026 0.01510 0.3740 0.4333 21 403 5 0.3976 0.01507 0.3691 0.4282 22 398 4 0.3936 0.01505 0.3652 0.4242 . . .螳 覲襦 譯曙 襯 . 5殊姶蟾讌 伎 襯 0.5760願, 0.5095. [edit]
6 : #cox regression 企.
> summary(coxph(Surv(time, status==1) ~ gender, data=x)) Call: coxph(formula = Surv(time, status == 1) ~ gender, data = x) n= 607, number of events= 605 coef exp(coef) se(coef) z Pr(>|z|) gender 0.10346 1.10900 0.08214 1.26 0.208 exp(coef) exp(-coef) lower .95 upper .95 gender 1.109 0.9017 0.9441 1.303 Concordance= 0.527 (se = 0.033 ) Rsquare= 0.003 (max possible= 1 ) Likelihood ratio test= 1.59 on 1 df, p=0.2069 Wald test = 1.59 on 1 df, p=0.2078 Score (logrank) test = 1.59 on 1 df, p=0.2076觜 螳襷(hazard)螳 1.10900覦 . p-value螳 0.208襦 讌 . [edit]
7 #out2 <- survfit(Surv(suvival_time, status==1) ~ mm, data=m) summary(out2) col <- colors()[c(26,31,33,51,76,153)] plot(out2, lty=1:2, col=col) legend("topright", levels(m$mm), col=col, text.col=col) col <- colors()[c(26,31,33,36,50,62,70,128,142,258,367,477,275)] plot(fit2, col=col, lwd=1) legend("topright", levels(sur$螳), col=col, text.col=col) [edit]
8 interval #library(survival) x <- df[df$genre == "殊",] out <- survfit(Surv(begin_dt, end_dt, event, type="interval") ~ nation, data=df) col <- colors()[c(26,31,33,36,50,62,70,128,142,258,367,477,275)] plot(out, col=col) legend("topright", levels(df$nation), col=col, text.col=col) s <- summary(out) data.frame(nation=gsub("nation=", "", s$strata), time=s$time, n.risk=s$n.risk, n.event=s$n.event, survival=s$surv) [edit]
9 AUC(area under the curve) ##AUC install.packages("pracma") require(pracma) out <- survfit(Surv(time=diff, event=event, type="right") ~ nation, data=x) rs <- data.frame(time=summary(out)$time, surv=summary(out)$surv, nation=gsub("nation=", "",summary(out)$strata)) trapz(rs[rs$nation=="譴蟲",]$time, rs[rs$nation=="譴蟲",]$surv) [edit]
10 ctree #library(party) library(survival) data("GBSG2", package = "TH.data") fit <- ctree(Surv(time, cens) ~ ., data = GBSG2) plot(fit) [edit]
11 survfit 蟆郁骸襯 data.frame 朱 #https://github.com/kmiddleton/rexamples/blob/master/qplot_survival.R
createSurvivalFrame <- function(f.survfit){ # initialise frame variable f.frame <- NULL # check if more then one strata if(length(names(f.survfit$strata)) == 0){ # create data.frame with data from survfit f.frame <- data.frame(time=f.survfit$time, n.risk=f.survfit$n.risk, n.event=f.survfit$n.event, n.censor = f.survfit$n.censor, surv=f.survfit$surv, upper=f.survfit$upper, lower=f.survfit$lower) # create first two rows (start at 1) f.start <- data.frame(time=c(0, f.frame$time[1]), n.risk=c(f.survfit$n, f.survfit$n), n.event=c(0,0), n.censor=c(0,0), surv=c(1,1), upper=c(1,1), lower=c(1,1)) # add first row to dataset f.frame <- rbind(f.start, f.frame) # remove temporary data rm(f.start) } else { # create vector for strata identification f.strata <- NULL for(f.i in 1:length(f.survfit$strata)){ # add vector for one strata according to number of rows of strata f.strata <- c(f.strata, rep(names(f.survfit$strata)[f.i], f.survfit$strata[f.i])) } # create data.frame with data from survfit (create column for strata) f.frame <- data.frame(time=f.survfit$time, n.risk=f.survfit$n.risk, n.event=f.survfit$n.event, n.censor = f.survfit$n.censor, surv=f.survfit$surv, upper=f.survfit$upper, lower=f.survfit$lower, strata=factor(f.strata)) # remove temporary data rm(f.strata) # create first two rows (start at 1) for each strata for(f.i in 1:length(f.survfit$strata)){ # take only subset for this strata from data f.subset <- subset(f.frame, strata==names(f.survfit$strata)[f.i]) # create first two rows (time: 0, time of first event) f.start <- data.frame(time=c(0, f.subset$time[1]), n.risk=rep(f.survfit[f.i]$n, 2), n.event=c(0,0), n.censor=c(0,0), surv=c(1,1), upper=c(1,1), lower=c(1,1), strata=rep(names(f.survfit$strata)[f.i],2)) # add first two rows to dataset f.frame <- rbind(f.start, f.frame) # remove temporary data rm(f.start, f.subset) } # reorder data f.frame <- f.frame[order(f.frame$strata, f.frame$time), ] # rename row.names rownames(f.frame) <- NULL } # return frame return(f.frame) } [edit]
12 豺危-襷伎 覦覯 # 譟伎 restricted mean survival time (RMST) .
R貊襦 覃.. library("survival") time <- c(3,2,2,1,0,0,0) status <- c(1,1,1,1,1,1,1) fit <- survfit(Surv(time,status) ~ 1) print(fit, print.rmean=TRUE) plot(fit) rmst <- sum(fit$surv)
鏤
|
碁レ 蟆 螻 襷 蟆 詞朱る 螻褐 . (蟯危) |