_覓 | 覦覈襦 | 豕蠏手 | 殊螳 | 譯殊碁 |
FrontPage › 碁
|
|
[edit]
1 碁 螳 #語 譬襯
語 伎
願唄 觜讀 譬朱 碁 る蟇 覲願 譯手朱 伎.
[edit]
2 語 level 譟一 #> x <- c("5豌", "5襷") > x <- factor(x) > x [1] 5豌 5襷 Levels: 5襷 5豌 > levels(x) <- c("5豌", "5襷") > x [1] 5襷 5豌 Levels: 5豌 5襷 [edit]
3 R #ろ 一危磯 "Excel 譟一覦覯 覦 糾覿, 誤讌, " .
tmp <- textConnection( "豌蟆一 蠍一螳 襷 豺 6 4 7 6 5 5 7 5 6 6 5 3 4 5 6 3 3 2 3 4 4 3 3 3 2 2 6 2 4 3 1 3 3 3 2 3 5 3 4 2 7 3 6 5 5 6 4 3 4 4 6 6 3 6 4 3 2 2 4 2 5 7 2 5 2 6 3 6 5 7 3 4 5 3 2 2 7 5 5 4 3 5 2 7 2 6 4 5 5 7 7 4 6 3 5 5 6 6 3 4 2 3 3 4 3 3 4 2 3 4 3 6 3 5 3 6 5 7 5 5 7 6 5 4 6") x <- read.table(tmp, header=TRUE) close.connection(tmp) #head(x) 襾殊 譯殊焔覿螻 碁 谿企ゼ 覲伎.
#install.packages("psych") #library("psych") fa.parallel(x) 蟆郁骸
> fa.parallel(x) Parallel analysis suggests that the number of factors = 2 and the number of components = 2語 2螳手 豢豌伎が.
fit <- factanal(x, 2, rotation="promax") print(fit) #print(fit, cutoff = 1e-05, digits = 2) 蟆郁骸
> print(fit) Call: factanal(x = x, factors = 2, rotation = "promax") Uniquenesses: 豌蟆一 蠍一螳 襷 豺 0.339 0.869 0.419 0.005 0.287 Loadings: Factor1 Factor2 豌蟆一 0.801 0.371 蠍一螳 0.775 襷 0.988 豺 0.833 Factor1 Factor2 SS loadings 1.939 1.122 Proportion Var 0.388 0.224 Cumulative Var 0.388 0.612 Factor Correlations: Factor1 Factor2 Factor1 1.000 0.239 Factor2 0.239 1.000 Test of the hypothesis that 2 factors are sufficient. The chi square statistic is 0.22 on 1 degree of freedom. The p-value is 0.639
#誤 る 谿瑚 譟郁 るゴ蟆 #fit <- factanal(x, 2, rotation="none") load <- fit$loadings[,1:2] plot(load,type="n") # set up plot text(load,labels=names(x),cex=.7) # add variable names factanal()螳 覃..
library(psych) library(GPArotation) fit <- fa(r=cor(x1), nfactors=3, rotate="promax") summary(fit) load <- fit$loadings[,1:2] plot(load,type="n") # set up plot text(load,labels=names(x),cex=.7) # add variable names 螳 覃 螻牛旧瑚 蟲 .
> factanal(x, 2, rotation="promax", scores="regression")$scores Factor1 Factor2 [1,] 0.8266176 1.15483124 [2,] 0.5335642 1.24017288 [3,] 0.5908294 0.35575418 [4,] -0.3220569 -1.12270001 [5,] -0.5015774 -1.07468932 [6,] -1.0200758 -0.06511692 [7,] -1.1099463 -0.90967064 [8,] -0.9146350 -0.09589597 [9,] 1.0607151 0.22680194 [10,] 0.2550042 -0.41469562 [11,] -0.1482268 1.42528154 [12,] -1.0589853 -0.06032610 [13,] -0.8896313 0.76484419 [14,] 1.4105432 0.13182575 [15,] -0.3724041 -1.10981555 [16,] -0.4344594 0.63898395 [17,] -1.6638319 2.69963963 [18,] 1.2315831 0.18258979 [19,] 1.4379888 -1.60177959 [20,] 0.7387958 -1.40917884 [21,] -0.8238109 -0.12347804 [22,] -0.3307093 -1.11890147 [23,] -0.8399416 0.74910139 [24,] 1.0109283 0.24243975 [25,] 1.3337221 -0.70601818
鏤
|
覦 一企 レ 襷 覦覯 れ 蠏瑚 覦 . (蟯危) |