Contents
1
螳
2
螻 覲瑚概螳
3
覲牛(compound event)
4
襯 螳
5
襯 螻給Μ 覯豺
6
襴曙螻 襯
7
覿
8
覯伎 襴
EXCEL 糾, 螳蠍, 一, 覦
(http://www.kyobobook.co.kr/product/detailViewKor.laf?ejkGb=KOR&mallGb=KOR&barcode=9788971898376&orderClick=LAH&Kc=)
襯 襴.
[
edit
]
1
螳
#
覿れ燕 蟆一 蠍 伎 覈讌 轟煙 豸″ 襯 覿蟇磯 企 蟆郁骸螳 覦 磯ゴ 覿螻 企ゼ 豕 襯 .
襯螻 豢襴糾螻朱 蟯螻,
襯 覈讌朱覿 覲語 (一)
豢襴糾 覲語朱覿 覈讌 豢襦(蠏)
[
edit
]
2
螻 覲瑚概螳
#
ろ(experiment)企 譟郁唄 蟯豸′企 豸′ 覦 螻殊
蠍磯蓋蟆郁骸(basic outcom)企 覃 結伎 覦 蟆郁骸
覲瑚概螳(sample sapce) ろ れ襦 蟯谿壱 螳ロ 覈 蠍磯蓋蟆郁骸(殊) 讌
(event) 襯ろ れ襦 視 伎 蠍磯蓋蟆郁骸れ 讌
[
edit
]
3
覲牛(compound event)
#
(union of event) 覲瑚概螳 企 覈 螳企 企 覈 殊れ 讌
蟲(intersection of event) 覲瑚概螳 企 覈 螻牛旧朱 讌
(complement of A)企 覲瑚概螳 覈 譴 轟 讌 殊 讌
[
edit
]
4
襯 螳
#
螳蟯 襯
螻 覦覯(企 覦覯)
企れ 100覈企. 譴 40覈企. 1覈 豢豢 蟆曙 襯?
60/100 = 0.6
蟆渚 覦覯( 螳 伎)
螻手碓 900 覿 螳企 覿 100. 螻糾螳 螳 覿 襯? (蠏)
100/900 = 0.11
蟆渚 覦覯 襯 蟆 蟆渚レ .
[
edit
]
5
襯 螻給Μ 覯豺
#
螻給Μ
螻給Μ1:
0 <= P(A) <= 1
螻給Μ2:
P(S) = 1
螻給Μ3:
P(A or B) = P(A) + P(B)
覯豺
覯豺(螻給Μ3朱覿)
P(A or B) = P(A) + P(A
c
) = 1
P(A
c
) = 1 - P(A)
ъ 覯豺
P(AB) = P(A) + P(B) - P(AB)
P(AB)襯 觜朱 伎 螻牛給覿 譴覲 螻一 狩蠍
碁旭企朱 譴覲給 覿覿 る 蟆. 蠏碁覩襦 P(AB) = 0 .
譟郁唄襯(蟆壱襯 谿瑚)
覦 蟯螻螳 伎 襯 るジ 覦 レ 覦 蟆曙
譬 蟆曙磯 伎螻 螳 覲螻 譯手, 觜覲旧豢豢(sampling without replacement)
P(A|B) = P(AB) / P(B)
企 B螳 企 覦る 譟郁唄 A螳 覦 襯
觜譬 蟆曙磯 貊ろ 讌 伎 螳 襷 蟆, 覲旧豢豢(sampling with replacement)
P(B|A) = P(B) P(A|B) = P(A)
P(A) P(B) 覓伎^蟇 襯(unconditional probability), 譯朱 襯(marginal probibility) 襯(simple probiblility) 手 .
螻煙覯豺( 蟆壱襯 = P(AB))
譟郁唄襯 P(A|B) = P(AB) / P(B)
覲 P(B)襯 螻燕覃 P(B)P(A|B) = P(B)P(AB) / P(B)
P(AB) = P(B)P(A|B)
襷, A 觜螳 覦蟇磯 一朱 覦 蟆壱襯 P(AB) = P(A)P(B)
蟆磯朱..
P(A|B) = P(A) P(B|A) = P(B)
P(AB) = P(A)P(B)
譟郁唄 焔渚讌 朱 譬朱 覲伎 .
[
edit
]
6
襴曙螻 襯
#
企 豢蟲 襯 4/9, 襯 3/9, 覓 襯 2/9企. 5 2覓 3 襯?
豌 蟆曙一 10! / (5!2!3!)
覓
覓
蟆曙一 (4/9)
5
(2/9)
2
(3/9)
3
蠏碁覩襦 襯..
(10! / (5!2!3!)) * (4/9)
5
(2/9)
2
(3/9)
3
[
edit
]
7
覿
#
覦煙
螻
35
5
40
15
25
40
螻
50
30
80
譯朱襯
譯朱襯 覿(contingency table) 譯朱(margin) 蠍 覓語 覿讌 企
P(覦煙) = 50/80 = 0.625
P() = 30/80 = 0.375
P() = 40/80 = 0.5
P() = 40/80 = 0.5
蟆壱襯
P(覦煙呉) = 35/80 * 40/80 = 0.4375
P(覦煙呉) = 15/80 * 40/80 = 0.1875
P(呉) = 05/80 * 40/80 = 0.0625
P(呉) = 25/80 * 40/80 = 0.3125
蟆壱襯覿
覦煙
螻
0.4375
0.0625
0.5
0.1875
0.3125
0.5
螻
0.625
0.375
1.0
譬 蟆曙一 譟郁唄 襯
語 譬瑚?
P() = 40/80 = 0.5
P(|) = P(呉) / P() = 0.0625 / 0.5 = 0.125 ( 語 蟆曙) --> 譬企.
襷 P() = P(|) 朱 襴曙企.
[
edit
]
8
覯伎 襴
#
螳
襯(prior probablility)
襯(posterior probability)
豢螳 覲 覲伎 螳 襯 蟆曙 襯襦 襷 覯伎 襴(bayes' theorem)螳 伎
覯伎 襴 襯螻 譟郁唄襯
P(L1|D) = P(L1)P(D|L1) / P(L1)P(D|L1) + P(L2)P(D|L2)
P(L2|D) = P(L2)P(D|L2) / P(L1)P(D|L1) + P(L2)P(D|L2)
讌 磯殊語 磯 るゴ. れ螻 螳 譯殊伎り .
襯
覿襯
一
L1
0.99
0.01
0.55
L2
0.95
0.05
0.45
覿 覦蟆 蟆曙 螳 殊 L1, L2 襯?
襯 L1 = 0.55, L2 = 0.45
P(L1|覿) = 0.55(0.01) / (0.55 * 0.01 + 0.45 * 0.05) = 0.1964
P(L2|覿) = 0.45(0.55) / (0.55 * 0.01 + 0.45 * 0.05) = 0.8036