--
R Package 'smbinning': Optimal Binning for Scoring Modeling(http://blog.revolutionanalytics.com/2015/03/r-package-smbinning-optimal-binning-for-scoring-modeling.html)
library(smbinning)
data(chileancredit)
# Training and testing samples
chileancredit.train=subset(chileancredit,FlagSample==1)
chileancredit.test=subset(chileancredit,FlagSample==0)
# Run and save results
result=smbinning(df=chileancredit.train,y="FlagGB",x="TOB",p=0.05)
result$ivtable
# Relevant plots (2x2 Page)
par(mfrow=c(2,2))
boxplot(chileancredit.train$TOB~chileancredit.train$FlagGB,
horizontal=T, frame=F, col="lightgray",main="Distribution")
mtext("Time on Books (Months)",3)
smbinning.plot(result,option="dist",sub="Time on Books (Months)")
smbinning.plot(result,option="badrate",sub="Time on Books (Months)")
smbinning.plot(result,option="WoE",sub="Time on Books (Months)")
par(mfrow=c(1,1))