_覓 | 覦覈襦 | 豕蠏手 | 殊螳 | 譯殊碁 |
FrontPage › CurveFitting
|
|
[edit]
1 n谿 curve fitting #x <- c(32,64,96,118,126,144,152.5,158) y <- c(99.5,104.8,108.5,100,86,64,35.3,15) plot(x,y,pch=19) xx <- seq(30,160, length=50) fit <- lm(y~poly(x,4,raw=TRUE)) summary(fit) lines(xx, predict(fit, data.frame(x=xx)), col="purple") 蟆郁骸
> summary(fit) Call: lm(formula = y ~ poly(x, 4, raw = TRUE)) Residuals: 1 2 3 4 5 6 7 8 0.1242 -0.6912 1.6355 1.4491 -5.1240 4.0360 -0.4692 -0.9604 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7.474e+01 5.473e+01 1.366 0.265 poly(x, 4, raw = TRUE)1 1.426e+00 3.095e+00 0.461 0.676 poly(x, 4, raw = TRUE)2 -2.854e-02 5.729e-02 -0.498 0.653 poly(x, 4, raw = TRUE)3 2.878e-04 4.278e-04 0.673 0.549 poly(x, 4, raw = TRUE)4 -1.134e-06 1.113e-06 -1.018 0.384 Residual standard error: 4.04 on 3 degrees of freedom Multiple R-squared: 0.9943, Adjusted R-squared: 0.9868 F-statistic: 131.5 on 4 and 3 DF, p-value: 0.001064
[edit]
2 log-normal curve fitting ##data val <- c(462604.2114,724545.9975,677961.1773,556621.1925,572068.4823,550408.0245,442748.9577,463050.285,485241.4509,406399.9335,394768.1661,474606.3792,408121.4988,254290.8273,234755.1933,201690.9834, 175243.2,171106.0665,228024.2613,199481.5251,141505.8969,148199.988,138756.7692,140078.0631,146512.2765,183688.7274,169084.7955,103705.1421,107350.3998,106554.8355,99301.161,105367.9611,148672.9455, 135343.5096,73087.3671,75604.4967,69973.8132,66367.3878,72191.2371,98143.1619,88506.7773,59722.086,59705.1591,54111.3165,49504.2126,50762.7774,68940.2766,67763.3592,50401.3383,50509.8696,51749.5161, 56774.814,56875.3797,65898.4131,58036.3659,45687.6945,44862.2592,41548.5696,37896.342,39405.8232,54220.8435,50035.9164,36221.5746,35067.5583,33099.0594,41550.561,33312.1392,42200.7531,36982.2894,26394.0156, 25939.9764,24163.6476,23641.9008,25495.8942,35859.1398,31292.8596,20783.2461,21233.3025,20770.302,20744.4138,19822.3956,31262.9886,28102.6368,17650.7739,17666.7051,17097.1647,16079.5593,17644.7997,26329.2951, 22879.1946,14800.0848,15000.2205,15227.2401,19307.6187,20345.1381,27219.4509,22791.573,14828.9601,26459.7318,65060.0337) seq <- 1:length(val) tmp <- data.frame(seq, val) #log-normal function fun <- function(x, mu, sd){ a <- 1/(x * sqrt(2*pi*sd)) b <- (log(x)-mu)^2 * -1 c <- 2 * sd^2 return (a * exp(b/c)) } #fitting library("minpack.lm") fit <- nlsLM(val ~ a * fun(seq, b, c) + d, start = list(a=1, b=0.01, c=100, d=1), control = nls.lm.control(maxiter = 1000), trace = TRUE, data=tmp) #plotting r <- sort(unique(tmp$seq)) xlim <- c(1,max(r)) ylim <- c(0, max(tmp$val) + max(tmp$val) * 0.3) plot(tmp$seq, tmp$val, cex=0.1, pch=19, xlim=xlim, ylim=ylim) lines(r, predict(fit, data.frame(seq=r)), col="red") [edit]
3 exponantial curve fitting #tmp <- textConnection( "lv ex 2 10 3 11 4 12 5 13 6 15 7 17 8 19 9 21 10 24 11 26 12 29 13 33 14 37 15 41 16 46 17 51 18 57 19 64 20 71 21 79 22 88 23 99 24 110 25 123 26 137 27 153 28 170 29 190 30 212 31 237 32 264 33 294 34 328 35 366 36 409 37 456 38 508 39 567 40 632 41 705 42 787 43 878 44 979 45 1092 46 1218 47 1358 48 1515 49 1689 50 1884") x <- read.table(tmp, header=TRUE) close.connection(tmp) head(x) xx <- x$lv plot(x$lv,x$ex,pch=19) cc <- coef(lm(log(ex) ~ lv, data=x)) fit <- nls(ex~ exp(a + b * lv), data=x, start = list(a = cc[1], b = cc[2])) lines(xx, predict(fit, data.frame(lv=xx)), col="red") summary(fit) [edit]
4 gamma #y <- c(0.0941,0.2372,0.2923,0.1750,0.0863,0.0419,0.0207,0.0128,0.0142,0.0071,0.0041,0.0031,0.0032,0.0057,0.0022,0.0001) x <- 1:length(y) library(MASS) est <- fitdistr(y,"gamma")$estimate # scale=0.4495207, shape=7.1923309 fit <- nls(y ~ dgamma(x, scale=a, shape=b), start=list(a=est[1], b=est[2]), trace=T) plot(x,y) lines(x, predict(fit, data.frame(x=x)), col="red") [edit]
5 smooth curve #x <- 1:10 y <- c(2,4,6,8,7,12,14,16,18,20) lo <- loess(y~x) plot(x,y) lines(predict(lo), col='red', lwd=2) [edit]
6 Adding two random variables via convolution in R #http://stackoverflow.com/questions/23569133/adding-two-random-variables-via-convolution-in-r
#install.packages("distr") library(distr) X <- rnorm(1000,1,0.5) Y <- rlnorm(1000,1.5,0.75) Z <- X + Y N <- Norm(mean=1, sd=0.5) # N is signature for normal dist L <- Lnorm(meanlog=1.5,sdlog=0.75) # same for log-normal conv <- convpow(L+N,1) # object of class AbscontDistribution f.Z <- d(conv) # distribution function hist(Z,freq=F,breaks=50, xlim=c(0,30)) z <- seq(0,50,0.01) lines(z,f.Z(z),lty=2,col="red") [edit]
7 propagte::fitDistr ##install.packages("propagate") library(propagate) y <- c(0.0941,0.2372,0.2923,0.1750,0.0863,0.0419,0.0207,0.0128,0.0142,0.0071,0.0041,0.0031,0.0032,0.0057,0.0022,0.0001) fit.result <- fitDistr(y) fit.result 蟆郁骸
> fit.result <- fitDistr(y) Fitting Normal distribution...Done. Fitting Skewed-normal distribution...Done. Fitting Generalized normal distribution...........10.........20.......Done. Fitting Log-normal distribution...Done. Fitting Scaled/shifted t- distribution...Done. Fitting Logistic distribution...Done. Fitting Uniform distribution...Done. Fitting Triangular distribution...Done. Fitting Trapezoidal distribution...Done. Fitting Curvilinear Trapezoidal distribution...Done. Fitting Generalized Trapezoidal distribution...Done. Fitting Gamma distribution...Done. Fitting Cauchy distribution...Done. Fitting Laplace distribution...Done. Fitting Gumbel distribution...Done. Fitting Johnson SU distribution...........10.........20.........30.........40.........50 .........60.........70.........80.Done. Fitting Johnson SB distribution...........10.........20.........30.........40.........50 .........60.........70.........80.Done. Fitting 3P Weibull distribution...........10.........20.......Done. Fitting 4P Beta distribution...Done. Fitting Arcsine distribution...Done. Fitting von Mises distribution...Done. > fit.result $aic Distribution AIC 17 Johnson SB 613.7082 18 3P Weibull 624.7589 3 Generalized normal 624.7920 16 Johnson SU 626.7920 4 Log-normal 627.1804 12 Gamma 634.9023 14 Laplace 639.8102 13 Cauchy 640.2875 5 Scaled/shifted t- 642.1013 15 Gumbel 642.8420 2 Skewed-normal 646.8412 6 Logistic 647.8476 1 Normal 652.1788 9 Trapezoidal 654.7066 20 Arcsine 670.4624 19 4P Beta 705.6771 11 Generalized Trapezoidal 836.8772 21 von Mises 882.3921 7 Uniform 897.6248 8 Triangular 905.4962 10 Curvilinear Trapezoidal 911.1446 $fit $fit$Normal Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: 0.000717984960447366, 0.00725890392042258 residual sum-of-squares: 197174 reason terminated: Relative error in the sum of squares is at most `ftol'. $fit$`Skewed-normal` Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: -0.00583038510142194, 0.0106443425236555, 8.50327745471171 residual sum-of-squares: 174116 reason terminated: Relative error in the sum of squares is at most `ftol'. $fit$`Generalized normal` Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: 0.0818148807363509, 0.0385147298611958, -2.26477841096039 residual sum-of-squares: 119822 reason terminated: Relative error in the sum of squares is at most `ftol'. $fit$`Log-normal` Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: -4.42473398922409, 2.05820723941306 residual sum-of-squares: 129074 reason terminated: Relative error in the sum of squares is at most `ftol'. $fit$`Scaled/shifted t-` Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: 0.002960556811455, 0.00543082394110837, 0.847275538361585 residual sum-of-squares: 160675 reason terminated: Relative error in the sum of squares is at most `ftol'. $fit$Logistic Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: 0.00106198716159507, 0.00448320432790849 residual sum-of-squares: 183218 reason terminated: Relative error in the sum of squares is at most `ftol'. $fit$Uniform Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: 0.00249994429141502, 0.289899967178183 residual sum-of-squares: 12634542 reason terminated: Relative error in the sum of squares is at most `ftol'. $fit$Triangular Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: -0.58442884603643, 0.276474920439136, 0.00750016053696837 residual sum-of-squares: 13956564 reason terminated: Relative error between `par' and the solution is at most `ptol'. $fit$Trapezoidal Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: -0.267697695351802, 0.162169769399358, -0.118546092194162, 0.0169541854752057 residual sum-of-squares: 192315 reason terminated: Relative error in the sum of squares is at most `ftol'. $fit$`Curvilinear Trapezoidal` Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: -3.51380272100041, 0.781019642275179, 0.778518731596065 residual sum-of-squares: 15358740 reason terminated: Relative error in the sum of squares is at most `ftol'. $fit$`Generalized Trapezoidal` Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: -0.316014522465303, -0.0122579620659835, 0.00250001098860818, -0.0569154565231172, 16.9883350504257, -13.687268319418, 1.38700131982915 residual sum-of-squares: 3808834 reason terminated: Relative error between `par' and the solution is at most `ptol'. $fit$Gamma Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: 0.365709818937871, 25.9401735353146 residual sum-of-squares: 147123 reason terminated: Relative error in the sum of squares is at most `ftol'. $fit$Cauchy Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: 0.0027034462361882, 0.00566077284092268 residual sum-of-squares: 161183 reason terminated: Relative error in the sum of squares is at most `ftol'. $fit$Laplace Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: 0.00208489337704117, 0.0115719008947262 residual sum-of-squares: 159884 reason terminated: Relative error in the sum of squares is at most `ftol'. $fit$Gumbel Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: -0.000564496234569831, 0.00585195632924723 residual sum-of-squares: 168315 reason terminated: Relative error in the sum of squares is at most `ftol'. $fit$`Johnson SU` Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: 0.00238945145777224, 2.41428652017113e-08, -6.58408257452447, 0.441518979946343 residual sum-of-squares: 119822 reason terminated: Relative error in the sum of squares is at most `ftol'. $fit$`Johnson SB` Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: 0.00249961631424682, 0.290585603944236, 0.633747903543896, 0.35472053982219 residual sum-of-squares: 95990 reason terminated: Relative error in the sum of squares is at most `ftol'. $fit$`3P Weibull` Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: 0.00206926024634554, 0.60287651598625, 0.0650136696113521 residual sum-of-squares: 119755 reason terminated: Relative error in the sum of squares is at most `ftol'. $fit$`4P Beta` Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: 243.96530522719, 244.003863012748, -0.219805373171359, 0.221019706262809 residual sum-of-squares: 456251 reason terminated: Relative error between `par' and the solution is at most `ptol'. $fit$Arcsine Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: 0.00241801362975452, 0.295326975917706 residual sum-of-squares: 268803 reason terminated: Relative error in the sum of squares is at most `ftol'. $fit$`von Mises` Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: 0.00235128799831663, 314.160915522474 residual sum-of-squares: 9759620 reason terminated: Number of iterations has reached `maxiter' == 1024. $bestfit Nonlinear regression via the Levenberg-Marquardt algorithm parameter estimates: 0.00249961631424682, 0.290585603944236, 0.633747903543896, 0.35472053982219 residual sum-of-squares: 95990 reason terminated: Relative error in the sum of squares is at most `ftol'. $fitted [1] 62.219673 20.891649 12.605071 9.187138 7.285103 6.065145 5.213740 4.585130 4.101920 3.719054 3.408463 [12] 3.151718 2.936210 2.753014 2.595632 2.459222 2.340100 2.235416 2.142929 2.060858 1.987768 1.922492 [23] 1.864074 1.811724 1.764788 1.722718 1.685056 1.651422 1.621494 1.595006 1.571740 1.551516 1.534193 [34] 1.519663 1.507852 1.498715 1.492237 1.488439 1.487372 1.489126 1.493832 1.501671 1.512883 1.527777 [45] 1.546754 1.570328 1.599166 1.634138 1.676391 1.727475 1.789524 1.865572 1.960094 2.080031 2.236881 [56] 2.451540 2.767639 3.300214 4.355798 $residuals [1] 0.2803273 4.1083505 12.3949289 -9.1871379 5.2148973 -6.0651453 -5.2137405 -4.5851299 8.3980803 -3.7190542 [11] -3.4084626 -3.1517175 -2.9362096 -2.7530136 -2.5956321 -2.4592222 -2.3401002 10.2645843 10.3570709 -2.0608580 [21] -1.9877677 -1.9224916 -1.8640737 -1.8117243 -1.7647878 -1.7227176 -1.6850565 -1.6514218 -1.6214937 -1.5950062 [31] -1.5717396 -1.5515155 -1.5341925 -1.5196632 10.9921481 -1.4987145 -1.4922374 -1.4884391 -1.4873721 -1.4891258 [41] -1.4938321 -1.5016714 -1.5128828 -1.5277768 -1.5467535 -1.5703281 -1.5991664 10.8658625 -1.6763910 -1.7274750 [51] -1.7895244 -1.8655720 -1.9600941 -2.0800311 -2.2368812 -2.4515397 -2.7676387 -3.3002136 8.1442017
鏤
|
蟇願 企´ 覦讌 螻給 蠍一旧 伎. (る襯企 る豺) |