#iris 一危一誤 襷り鍵
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
iris = load_iris()
iris.data
iris.feature_names
iris.target
iris.target_names
iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)
iris_df["target"] = iris.target
iris_df["target_names"] = iris.target_names[iris.target]
iris_df[:5]
#誤, ろ語誤 蠍
from sklearn.model_selection import train_test_split
train_set, test_set = train_test_split(iris_df, test_size = 0.3)
train_set.shape
test_set.shape
#kNN
import sklearn.neighbors as nn
knn = nn.KNeighborsClassifier(n_neighbors = 1)
#
knn.fit(X=train_set.ix[:, [0,1,2,3]], y=train_set.target)
#ろ
pred = knn.predict(X=test_set.ix[:, [0,1,2,3]])
#焔ロろ
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
#confusion_matrix
#classification_report
c_mat = confusion_matrix(test_set.target.values, pred)
print('\n\nConfusion Matrix\n', c_mat)
print('\n', classification_report(test_set.target.values, pred, target_names=iris.target_names))
蟆郁骸
print('\n\nConfusion Matrix\n', c_mat)
print('\n', classification_report(test_set.target.values, pred, target_names=iris.target_names))
Confusion Matrix
[[12 0 0]
[ 0 21 1]
[ 0 1 10]]
precision recall f1-score support
setosa 1.00 1.00 1.00 12
versicolor 0.95 0.95 0.95 22
virginica 0.91 0.91 0.91 11
avg / total 0.96 0.96 0.96 45
- precision(襯): 豸♀骸 れ螳 朱 螳?
- recall() : 覦襯願 覿襯 一危一 觜?
- f1-score(F1) : 襯螻 譟壱蠏 --> 願姥 覲企 .
覘...TP(true positive) 焔 覘 り襴 企れ 襷, 讌 豺郁..
confusion matrix 螳() 襷朱 襷襦 譬蟇磯.