colour <- c("red", "black") plot(tmp$seq, tmp$up, col=c(colour[tmp$choice])) plot(tmp$seq, tmp$up, pch=tmp$choice)
lg <- c("覓", "豕螻") cl <- c("blue", "red") plot(scale(x$gift), type="l", col=cl[1]) lines(scale(x$mcu), col=cl[2]) legend(1.5, 2.4,lg, lty="solid", col=cl)
out3 <- survfit(Surv(time, status==1) ~ , data=x1) plot(out3, col=c(1:7), lty=1:7) legend.txt <- c("","","","","覈","蠍","") legend("topright", legend=legend.txt, col=1:7, lty=1:7) summary(out3)
install.packages("mclust") library("mclust") education <- read.csv("http://datasets.flowingdata.com/education.csv", header=T) head(education) > head(education) state reading math writing percent_graduates_sat pupil_staff_ratio dropout_rate 1 United States 501 515 493 46 7.9 4.4 2 Alabama 557 552 549 7 6.7 2.3 3 Alaska 520 516 492 46 7.9 7.3 4 Arizona 516 521 497 26 10.4 7.6 5 Arkansas 572 572 556 5 6.8 4.6 6 California 500 513 498 49 10.9 5.5 #2~7願讌襯 伎 企Μ 蟇磯Μ襯 蟲. ed.dis <- dist(education[,2:7]) #cmdscale -> 蟇磯Μ ル, ル 蟇磯Μ 襷蟆 覦一. ed.mds <- cmdscale(ed.dis) x<- ed.mds[,1] y<- ed.mds[,2] plot(x,y) plot(x,y, type='n') text(x,y, label=education$state) ed.mclust <- Mclust(ed.mds) par(mfrow=c(2,2)) plot(ed.mclust, data=ed.mds)
require(graphics) with(cars, scatter.smooth(speed, dist)) ## or with dotted thick smoothed line results : with(cars, scatter.smooth(speed, dist, lpars = list(col = "red", lwd = 3, lty = 3)))
install.packages("portfolio") library("portfolio") posts <- read.csv("http://datasets.flowingdata.com/post-data.txt") head(posts) > head(posts) id views comments category 1 5019 148896 28 Artistic Visualization 2 1416 81374 26 Visualization 3 1416 81374 26 Featured 4 3485 80819 37 Featured 5 3485 80819 37 Mapping 6 3485 80819 37 Data Sources with(posts, map.market( id=id, area=views, group=category, color=comments, main="FlowsingData Map"))