library("kernlab") model <- ksvm(factor(is_out) ~., data=training, kernel = "rbfdot") pred <- predict(model, newdata=test2, type="response") confusionMatrix(pred, test2$is_out)
library(e1071) tunemodel <- tune.svm(factor(is_out) ~., data=training, gamma = 2^(-4:0), cost = 2^(-2:2)) tunemodel model <- svm(factor(is_out) ~ ., data = training, kernel = "radial" ) pred <- predict(model, newdata=test) table(pred, test$is_out) pred <- predict(model, newdata=test, probability = T) confusionMatrix(ifelse(attr(pred, "probabilities")[,2] >= 0.7, 1, 0), test$is_out) model <- svm(factor(is_out) ~., data=training, method="class", probability=T, class.weights=c("1"=0.45, "0"=0.55)) pred <- predict(model, newdata=test2, type="class") confusionMatrix(pred, test2$is_out)