_覓 | 覦覈襦 | 豕蠏手 | 殊螳 | 譯殊碁 |
FrontPage › ろろ
|
|
(forest) 螻, 賀 覓(tree)れ . 蠍一 覓企 蟆一碁Μ. input 一危磯 random願, 蛾 random企. 賀 覓企れ蟆 random input 伎 螳 覓企れ 覬企企 蟆郁骸襯 voting(れ蟆一 豺)伎 覿襯. 一危一 螻殊朱 ろ螻, 襷 覲襯 伎企 覲 蟇 ろ 螳 ク企. unbalanced class 覈讌 襷. -- R 伎 觜一危 覿, 蟾蟆渚 谿瑚
[edit]
1 一危 #EXCEL 譟一覦覯 覦 糾覿襯 伎.
cname <- c("ID", "蟲襷る", "磯","碁一", "碁", "覦覓碁", "蟇一朱") x = read.table("c:\\data\\disc.txt", col.names = cname) head(x)disc.txt > head(x) ID 蟲襷る 磯 碁一 碁 覦覓碁 蟇一朱 1 1 A 48 9000 4 5 6 2 2 A 58 8000 6 4 20 3 3 A 52 7000 6 4 12 4 4 A 63 7000 6 4 15 5 5 A 59 8000 4 6 6 6 6 A 38 11000 5 4 10 > [edit]
2 ろろ #tree <- randomForest(蟲襷る ~ 磯 + 碁一 + 碁 + 覦覓碁 + 蟇一朱, data=x) print(tree) # view results importance(tree) 蟆郁骸
> print(tree) # view results Call: randomForest(formula = 蟲襷る ~ 磯 + 碁一 + 碁 + 覦覓碁 + 蟇一朱, data = x) Type of random forest: classification Number of trees: 500 No. of variables tried at each split: 2 OOB estimate of error rate: 5% Confusion matrix: A B class.error A 10 0 0.0 B 1 9 0.1 > importance(tree) MeanDecreaseGini 磯 2.624620 碁一 1.815804 碁 1.263035 覦覓碁 1.196015 蟇一朱 2.576659 >蟲襷る襯 蟆一 覲 譴 磯 > 蟇一朱 > 碁一 > 碁 > 覦覓碁 企. rf <- randomForest(factor(t3)~diff_cnt+diff_time, data=x6, type="classification", importance=TRUE,na.action=na.omit) pred <- predict(rf, newdata=test) table(pred, test$t3) data(iris) set.seed(111) ind <- sample(2, nrow(iris), replace = TRUE, prob=c(0.8, 0.2)) iris.rf <- randomForest(Species ~ ., data=iris[ind == 1,]) iris.pred <- predict(iris.rf, iris[ind == 2,]) table(observed = iris[ind==2, "Species"], predicted = iris.pred) 襦..
install.packages("rpart") library("rpart") cf <- cforest(Species ~ ., data = iris) pt <- party:::prettytree(cf@ensemble[[1]], names(cf@data@get("input"))) pt nt <- new("BinaryTree") nt@tree <- pt nt@data <- cf@data nt@responses <- cf@responses nt plot(nt) install.packages("tree") library(tree) tr <- tree(Species ~ ., data=iris) tr [edit]
3 覲 譴 Gini impurity #Gini impurity
讌 讌(Gini Index) 覿(impurity)襯 豸′ 讌企. 螳豌願 覈覲 i覯讌 覯譯朱覿 豢豢螻, 蠏 螳豌企ゼ 覈覲 j覯讌 覯譯殊 り る襯(misclassification) 襯 P(i)P(j)螳 . 蠍一 P(i) 螳 襷 螳豌願 覈覲 I覯讌 覯譯殊 襯企. 企 る襯 襯 覈 覲 譴
imp <- data.frame(importance(model)) imp[order(imp$MeanDecreaseGini, decreasing=T),] varImpPlot(model)蟆郁骸 蟯 譴 讌 覿 蟯 譴 2螳讌襦 plotting . [edit]
4 RRF #Regularized Random Forest
install.packages("RRF") library("RRF") model <- RRF(factor(is_out) ~ ., data=training, type="classification", importance=TRUE) pred <- predict(model, newdata=test2) confusionMatrix(pred, test2$is_out)
鏤
|
覈 蟆 蟆 瑚 蟆伎 (启) |