_覓 | 覦覈襦 | 豕蠏手 | 殊螳 | 譯殊碁 |
FrontPage › 譴蟯覿
|
|
[edit]
2 #tmp <- textConnection( "tv 蠍磯レ 襷るル 碁 1 46 34 28 39 2 60 31 50 46 3 81 59 63 72 4 94 84 92 92 5 76 67 86 52 6 31 53 41 39 7 34 38 25 25 8 78 75 64 76 9 54 43 38 55 10 86 53 60 70 11 53 43 34 42 12 78 31 52 67 13 96 66 77 88 14 71 90 86 65 15 67 58 60 70 16 32 68 74 45 17 44 55 60 42 18 59 46 42 67 19 76 30 37 64 20 84 51 54 79") x <- read.table(tmp, header=TRUE) close.connection(tmp) #head(x) library("sqldf") d1 <- sqldf("select , 蠍磯レ from x") d2 <- sqldf("select 襷るル, 碁 from x") rs1 <- cancor(d1, d2) rs1$cor > X <- with(x, -0.007865095 * (-65.00) + -0.006951716 * (蠍磯レ-53.75)) > Y <- with(x, -0.007865095 * (襷るル-56.15) + -0.006951716 * (碁-59.75)) > cor.test(X,Y) Pearson's product-moment correlation data: X and Y t = 13.0087, df = 18, p-value = 1.362e-10 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.8772728 0.9806609 sample estimates: cor 0.9507151 > plot(X,Y) #install.packages("CCA") library("CCA") rs2 <- cc(d1, d2) plot(rs2$scores$xscores[,1], rs2$scores$yscores[,1]) [edit]
3 るジ 覦覯 ##install.packages("yacca") library("yacca") rs3 <- cca(d1, d2) rs3 > rs3 Canonical Correlation Analysis Canonical Correlations: CV 1 CV 2 0.9558493 0.6976745 X Coefficients: CV 1 CV 2 -0.03428316 0.03920114 蠍磯レ -0.03030183 -0.05234068 Y Coefficients: CV 1 CV 2 襷るル -0.02577813 -0.05651435 碁 -0.03411328 0.05890991 Structural Correlations (Loadings) - X Vars: CV 1 CV 2 -0.8654311 0.5010280 蠍磯レ -0.7527465 -0.6583105 Structural Correlations (Loadings) - Y Vars: CV 1 CV 2 襷るル -0.8653783 -0.5011192 碁 -0.9098212 0.4150005 Aggregate Redundancy Coefficients (Total Variance Explained): X | Y: 0.7675629 Y | X: 0.823285 > plot(rs3) 伎 企慨覃...
Canonical Correlations: CV 1 CV 2 0.9558493 0.6976745 Aggregate Redundancy Coefficients (Total Variance Explained): X | Y: 0.7675629 Y | X: 0.823285 Structural Correlations (Loadings) - X Vars: CV 1 CV 2 -0.8654311 0.5010280 蠍磯レ -0.7527465 -0.6583105 Structural Correlations (Loadings) - Y Vars: CV 1 CV 2 襷るル -0.8653783 -0.5011192 碁 -0.9098212 0.4150005
X Coefficients: CV 1 CV 2 -0.03428316 0.03920114 蠍磯レ -0.03030183 -0.05234068 Y Coefficients: CV 1 CV 2 襷るル -0.02577813 -0.05651435 碁 -0.03411328 0.05890991 譴蟯螻
> X <- with(x, -0.03428316 * + -0.03030183 * 蠍磯レ) > Y <- with(x, -0.02577813 * 襷るル + -0.03411328 * 碁) > cor.test(X,Y) Pearson's product-moment correlation data: X and Y t = 13.8003, df = 18, p-value = 5.156e-11 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.8896248 0.9827032 sample estimates: cor 0.9558493 企 譴蟯螻蟾讌 碁? (Bartlett's test)
> F.test.cca(rs3) F Test for Canonical Correlations (Rao's F Approximation) Corr F Num df Den df Pr(>F) CV 1 0.95585 30.00045 4.00000 32 2.029e-10 *** CV 2 0.69767 16.12224 1.00000 17 0.0008971 *** --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
鏤
|
讌蠍蟾讌 襷れ 覲 蟆一 豺蟲襯 螳讌 . ( ) |