_覓 | 覦覈襦 | 豕蠏手 | 殊螳 | 譯殊碁 |
FrontPage › QuantileRegression
|
|
library(quantreg) data(airquality) head(airquality) airq <- airquality[143:150,] f <- rq(Ozone ~ ., data=airquality) predict(f,newdata=airq) f <- rq(Ozone ~ ., data=airquality,tau=1:3/4) predict(f,newdata=airq) [edit]
1 1 #x <- c(32,64,96,118,126,144,152.5,158) y <- c(99.5,104.8,108.5,100,86,64,35.3,15) df <- data.frame(x=x, y=y) plot(x,y,pch=19) library(splines) #bs( function)) X <- model.matrix(y ~ bs(x, df=4)) fit <- rq(y~bs(x, df=4),data=df, tau=0.5) y.fit <- X %*% fit$coef lines(x, y.fit) [edit]
2 2 ## install.packages("quantreg") library("quantreg") data(engel) head(engel) > head(engel) income foodexp 1 420.1577 255.8394 2 541.4117 310.9587 3 901.1575 485.6800 4 639.0802 402.9974 5 750.8756 495.5608 6 945.7989 633.7978 par(mfrow=c(2,1)) hist(engel$income) hist(engel$foodexp) par(mfrow=c(1,1)) f<-rq((engel$foodexp)~(engel$income),tau=c(0.05,0.1,0.25,0.5,0.75,0.9,0.95)) f fit <- rq(foodexp ~ income, data=engel, tau = c(0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95)) fit 蟆郁骸
> f Call: rq(formula = (engel$foodexp) ~ (engel$income), tau = c(0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95)) Coefficients: tau= 0.05 tau= 0.10 tau= 0.25 tau= 0.50 tau= 0.75 tau= 0.90 tau= 0.95 (Intercept) 124.8800408 110.1415742 95.4835396 81.4822474 62.3965855 67.3508721 64.1039632 engel$income 0.3433611 0.4017658 0.4741032 0.5601806 0.6440141 0.6862995 0.7090685 Degrees of freedom: 235 total; 233 residual predict 谿瑚
data(airquality) airq <- airquality[143:145,] f <- rq(Ozone ~ ., data=airquality) predict(f,newdata=airq) f <- rq(Ozone ~ ., data=airquality, tau=1:19/20) fp <- predict(f, newdata=airq, stepfun = TRUE) fpr <- rearrange(fp) plot(fp[[2]],main = "Ozone Prediction") par(col="red") lines(fpr[[2]]) legend(.2,20,c("raw","cooked"),lty = c(1,1),col=c("black","red"))
鏤
|
蠍郁 蠏碁 朱伎 貉るる 譟伎手 螳 蟇磯. 蠍一 螳豺襯 れ覲企 蟆 螳 觜蟲危. (襴ろ ) |